Zúñiga José, Picón José Antonio G, Bastida Adolfo, Requena Alberto
Departamento de Química Física, Universidad de Murcia, 30100 Murcia, Spain.
J Chem Phys. 2007 Jun 28;126(24):244305. doi: 10.1063/1.2743441.
In this paper the authors use the optimal internal vibrational coordinates previously determined for the electronic ground state of the ozone molecule to study the vibrational spectrum of the molecule employing the second empirical potential energy surface calculated by Tyuterev et al. [Chem. Phys. Lett. 316, 271 (2000)]. First, the authors compute variationally all the bound vibrational energy levels of the molecule up to the dissociation limit and state the usefulness of the optimal coordinates in this respect, which allows us to converge all the bound levels using relatively small anharmonic basis sets. By analyzing the expansion coefficients of the wave functions, they show then that a large portion of the vibrational spectrum of O3 can be structured in nearly separable polyadic groups characterized by the polyad quantum number N=n1+n2+n(theta) corresponding to the optimal internal coordinates. Accordingly, they determine an internal effective vibrational Hamiltonian for O3 by fitting the effective Hamiltonian parameters to the experimental vibrational frequencies, using as input parameters in the fit those extracted from an analytical second-order Van Vleck perturbation theory calculation. It is finally shown that the internal effective Hamiltonian thus obtained accurately describes the vibrational spectrum of ozone in the low and medium energy regimes.
在本文中,作者使用先前为臭氧分子的电子基态确定的最佳内部振动坐标,采用Tyuterev等人[《化学物理快报》316, 271 (2000)]计算的第二个经验势能面来研究该分子的振动光谱。首先,作者变分计算了该分子直至解离极限的所有束缚振动能级,并阐述了最佳坐标在这方面的有用性,这使我们能够使用相对较小的非谐基组来收敛所有束缚能级。通过分析波函数的展开系数,他们随后表明,O₃振动光谱的很大一部分可以由以与最佳内部坐标对应的多量子数N = n₁ + n₂ + n(θ)为特征的近可分离多组来构建。因此,他们通过将有效哈密顿量参数拟合到实验振动频率来确定O₃的内部有效振动哈密顿量,在拟合中使用从解析二阶范弗莱克微扰理论计算中提取的那些作为输入参数。最终表明,由此获得的内部有效哈密顿量准确地描述了低能和中能区域中臭氧的振动光谱。