Kerkhoff Andrew J, Enquist Brian J
Ecol Lett. 2006 Apr;9(4):419-27. doi: 10.1111/j.1461-0248.2006.00888.x.
A principal challenge in ecology is to integrate physiological function (e.g. photosynthesis) across a collection of individuals (e.g. plants of different species) to understand the functioning of the entire ensemble (e.g. primary productivity). The control that organism size exerts over physiological and ecological function suggests that allometry could be a powerful tool for scaling ecological processes across levels of organization. Here we use individual plant allometries to predict how nutrient content and productivity scale with total plant biomass (phytomass) in whole plant communities. As predicted by our model, net primary productivity as well as whole community nitrogen and phosphorus content all scale allometrically with phytomass across diverse plant communities, from tropical forest to arctic tundra. Importantly, productivity data deviate quantitatively from the theoretically derived prediction, and nutrient productivity (production per unit nutrient) of terrestrial plant communities decreases systematically with increasing total phytomass. These results are consistent with the existence of pronounced competitive size hierarchies. The previously undocumented generality of these 'ecosystem allometries' and their basis in the structure and function of individual plants will likely provide a useful quantitative framework for research linking plant traits to ecosystem processes.
生态学中的一个主要挑战是将生理功能(如光合作用)整合到一组个体(如不同物种的植物)中,以了解整个群落的功能(如初级生产力)。生物体大小对生理和生态功能的控制表明,异速生长可能是一种强大的工具,可用于跨组织层次扩展生态过程。在这里,我们使用个体植物的异速生长关系来预测整个植物群落中养分含量和生产力如何随植物总生物量(植物量)而变化。正如我们的模型所预测的那样,从热带森林到北极苔原,不同植物群落中的净初级生产力以及整个群落的氮和磷含量均与植物量呈异速生长关系。重要的是,生产力数据在数量上偏离了理论推导的预测,并且陆地植物群落的养分生产力(单位养分产量)随着植物总量的增加而系统地降低。这些结果与明显的竞争大小等级制度的存在相一致。这些“生态系统异速生长关系”以前未被记录的普遍性及其在个体植物结构和功能中的基础,可能会为将植物性状与生态系统过程联系起来的研究提供一个有用的定量框架。