Suppr超能文献

预测种子萌发对温度的响应。I. 基点温度模型与特定亚群回归

Predicting germination response to temperature. I. Cardinal-temperature models and subpopulation-specific regression.

作者信息

Hardegree Stuart P

机构信息

USDA Agricultural Research Service, Northwest Watershed Research Center, 800 Park Blvd, Suite 105, Boise, ID 83712, USA.

出版信息

Ann Bot. 2006 Jun;97(6):1115-25. doi: 10.1093/aob/mcl071. Epub 2006 Apr 19.

Abstract

BACKGROUND AND AIMS

The purpose of this study was to compare the relative accuracy of different thermal-germination models in predicting germination-time under constant-temperature conditions. Of specific interest was the assessment of shape assumptions associated with the cardinal-temperature germination model and probit distribution often used to distribute thermal coefficients among seed subpopulations.

METHODS

The seeds of four rangeland grass species were germinated over the constant-temperature range of 3-38 degrees C and monitored for subpopulation variability in germination-rate response. Subpopulation-specific germination rate was estimated as a function of temperature and residual model error for three variations of the cardinal-temperature model, non-linear regression and piece-wise linear regression. The data were used to test relative model fit under alternative assumptions regarding model shape.

KEY RESULTS

In general, optimal model fit was obtained by limiting model-shape assumptions. All models were relatively accurate in the sub-optimal temperature range except in the 3 degrees C treatment where predicted germination times were in error by as much as 70 d for the cardinal-temperature models.

CONCLUSIONS

Germination model selection should be driven by research objectives. Cardinal-temperature models yield coefficients that can be directly compared for purposes of screening germplasm. Other model formulations, however, may be more accurate in predicting germination-time, especially at low temperatures where small errors in predicted rate can result in relatively large errors in germination time.

摘要

背景与目的

本研究旨在比较不同热萌发模型在恒温条件下预测萌发时间的相对准确性。特别关注的是对与基点温度萌发模型和常用于在种子亚群间分配热系数的概率分布相关的形状假设的评估。

方法

四种牧场草种的种子在3 - 38摄氏度的恒温范围内萌发,并监测萌发速率响应中的亚群变异性。针对基点温度模型的三种变体、非线性回归和分段线性回归,将特定亚群的萌发速率估计为温度和残差模型误差的函数。这些数据用于在关于模型形状的替代假设下测试相对模型拟合度。

主要结果

总体而言,通过限制模型形状假设可获得最佳模型拟合。除了在3摄氏度处理中,基点温度模型预测的萌发时间误差高达70天外,所有模型在次优温度范围内都相对准确。

结论

萌发模型的选择应受研究目标驱动。基点温度模型产生的系数可直接用于种质筛选比较。然而,其他模型公式在预测萌发时间方面可能更准确,尤其是在低温下,预测速率的小误差可能导致萌发时间出现相对较大的误差。

相似文献

引用本文的文献

本文引用的文献

1
Estimation of base temperatures for nine weed species.九种杂草的基础温度估算
J Exp Bot. 2000 Feb;51(343):275-86. doi: 10.1093/jexbot/51.343.275.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验