Suppr超能文献

笨蛋环磷酸腺苷磷酸二酯酶PDE-4对秀丽隐杆线虫突触信号网络中依赖Gα(s)和不依赖Gα(s)的环磷酸腺苷池起负调控作用。

The Dunce cAMP phosphodiesterase PDE-4 negatively regulates G alpha(s)-dependent and G alpha(s)-independent cAMP pools in the Caenorhabditis elegans synaptic signaling network.

作者信息

Charlie Nicole K, Thomure Angela M, Schade Michael A, Miller Kenneth G

机构信息

Program in Molecular, Cell and Developmental Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA.

出版信息

Genetics. 2006 May;173(1):111-30. doi: 10.1534/genetics.105.054007. Epub 2006 Apr 19.

Abstract

Forward genetic screens for mutations that rescue the paralysis of ric-8 (Synembryn) reduction-of-function mutations frequently reveal mutations that cause hyperactivation of one or more components of the G alpha(s) pathway. Here, we report that one of these mutations strongly reduces the function of the Dunce cAMP phosphodiesterase PDE-4 by disrupting a conserved active site residue. Loss of function and neural overexpression of PDE-4 have profound and opposite effects on locomotion rate, but drug-response assays suggest that loss of PDE-4 function does not affect steady-state acetylcholine release or reception. Our genetic analysis suggests that PDE-4 regulates both G alpha(s)-dependent and G alpha(s)-independent cAMP pools in the neurons controlling locomotion rate. By immunostaining, PDE-4 is strongly expressed throughout the nervous system, where it localizes to small regions at the outside boundaries of synaptic vesicle clusters as well as intersynaptic regions. The synaptic subregions containing PDE-4 are distinct from those containing active zones, as indicated by costaining with an antibody against the long form of UNC-13. This highly focal subsynaptic localization suggests that PDE-4 may exert its effects by spatially regulating intrasynaptic cAMP pools.

摘要

针对能挽救ric-8(Synembryn)功能缺失突变所致麻痹的突变进行的正向遗传学筛选,经常会发现导致Gα(s)信号通路一个或多个组分过度激活的突变。在此,我们报道其中一个突变通过破坏一个保守的活性位点残基,强烈降低了邓恩环磷酸腺苷磷酸二酯酶PDE-4的功能。PDE-4功能缺失和在神经中过表达对运动速率有深远且相反的影响,但药物反应试验表明PDE-4功能缺失并不影响稳态乙酰胆碱的释放或接收。我们的遗传学分析表明,PDE-4在控制运动速率的神经元中调节依赖Gα(s)和不依赖Gα(s)的环磷酸腺苷池。通过免疫染色,PDE-4在整个神经系统中强烈表达,它定位于突触小泡簇外部边界的小区域以及突触间区域。如用抗UNC-13长形式抗体共染色所示,含有PDE-4的突触亚区域与含有活性区的区域不同。这种高度集中的突触下定位表明,PDE-4可能通过在空间上调节突触内的环磷酸腺苷池发挥其作用。

相似文献

7
Active site coupling in PDE:PKA complexes promotes resetting of mammalian cAMP signaling.
Biophys J. 2014 Sep 16;107(6):1426-40. doi: 10.1016/j.bpj.2014.07.050.
8
Cyclic nucleotide phosphodiesterases in Drosophila melanogaster.
Biochem J. 2005 May 15;388(Pt 1):333-42. doi: 10.1042/BJ20050057.
10
Cyclic AMP-specific PDE4 phosphodiesterases as critical components of cyclic AMP signaling.
J Biol Chem. 2003 Feb 21;278(8):5493-6. doi: 10.1074/jbc.R200029200. Epub 2002 Dec 18.

引用本文的文献

3
Use of a Fission Yeast Platform to Identify and Characterize Small Molecule PDE Inhibitors.
Front Pharmacol. 2022 Jan 17;12:833156. doi: 10.3389/fphar.2021.833156. eCollection 2021.
4
A glial ClC Cl channel mediates nose touch responses in C. elegans.
Neuron. 2022 Feb 2;110(3):470-485.e7. doi: 10.1016/j.neuron.2021.11.010. Epub 2021 Dec 2.
6
Synapsin Is Required for Dense Core Vesicle Capture and cAMP-Dependent Neuropeptide Release.
J Neurosci. 2021 May 12;41(19):4187-4201. doi: 10.1523/JNEUROSCI.2631-20.2021. Epub 2021 Apr 5.
7
PDE inhibition in distinct cell types to reclaim the balance of synaptic plasticity.
Theranostics. 2021 Jan 1;11(5):2080-2097. doi: 10.7150/thno.50701. eCollection 2021.
8
Orcokinin neuropeptides regulate sleep in .
J Neurogenet. 2020 Sep-Dec;34(3-4):440-452. doi: 10.1080/01677063.2020.1830084. Epub 2020 Oct 12.
9
The Enigmatic Canal-Associated Neurons Regulate Larval Development Through a cAMP Signaling Pathway.
Genetics. 2019 Dec;213(4):1465-1478. doi: 10.1534/genetics.119.302628. Epub 2019 Oct 16.
10
Interneurons Regulate Locomotion Quiescence via Cyclic Adenosine Monophosphate Signaling During Stress-Induced Sleep in .
Genetics. 2019 Sep;213(1):267-279. doi: 10.1534/genetics.119.302293. Epub 2019 Jul 10.

本文引用的文献

2
WormBase: a comprehensive data resource for Caenorhabditis biology and genomics.
Nucleic Acids Res. 2005 Jan 1;33(Database issue):D383-9. doi: 10.1093/nar/gki066.
3
CDD: a Conserved Domain Database for protein classification.
Nucleic Acids Res. 2005 Jan 1;33(Database issue):D192-6. doi: 10.1093/nar/gki069.
4
Synaptic vesicle pools and plasticity of synaptic transmission at the Drosophila synapse.
Brain Res Brain Res Rev. 2004 Dec;47(1-3):18-32. doi: 10.1016/j.brainresrev.2004.05.004.
5
Convergent, RIC-8-dependent Galpha signaling pathways in the Caenorhabditis elegans synaptic signaling network.
Genetics. 2005 Feb;169(2):651-70. doi: 10.1534/genetics.104.031286. Epub 2004 Oct 16.
8
9
Presynaptic impairment of synaptic transmission in Drosophila embryos lacking Gs(alpha).
J Neurosci. 2003 Jul 2;23(13):5897-905. doi: 10.1523/JNEUROSCI.23-13-05897.2003.
10
Mutation and activation of Galpha s similarly alters pre- and postsynaptic mechanisms modulating neurotransmission.
J Neurophysiol. 2003 May;89(5):2620-38. doi: 10.1152/jn.01072.2002. Epub 2003 Jan 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验