Baierl Andreas, Bogdan Małgorzata, Frommlet Florian, Futschik Andreas
Institute of Statistics and Decision Support Systems, University of Vienna, Austria.
Genetics. 2006 Jul;173(3):1693-703. doi: 10.1534/genetics.105.048108. Epub 2006 Apr 19.
A modified version (mBIC) of the Bayesian Information Criterion (BIC) has been previously proposed for backcross designs to locate multiple interacting quantitative trait loci. In this article, we extend the method to intercross designs. We also propose two modifications of the mBIC. First we investigate a two-stage procedure in the spirit of empirical Bayes methods involving an adaptive (i.e., data-based) choice of the penalty. The purpose of the second modification is to increase the power of detecting epistasis effects at loci where main effects have already been detected. We investigate the proposed methods by computer simulations under a wide range of realistic genetic models, with nonequidistant marker spacings and missing data. In the case of large intermarker distances we use imputations according to Haley and Knott regression to reduce the distance between searched positions to not more than 10 cM. Haley and Knott regression is also used to handle missing data. The simulation study as well as real data analyses demonstrates good properties of the proposed method of QTL detection.
贝叶斯信息准则(BIC)的一个修改版本(mBIC)先前已被提出用于回交设计,以定位多个相互作用的数量性状基因座。在本文中,我们将该方法扩展到杂交设计。我们还提出了对mBIC的两种修改。首先,我们本着经验贝叶斯方法的精神研究一种两阶段程序,该程序涉及惩罚的自适应(即基于数据)选择。第二种修改的目的是提高在已经检测到主效应的基因座上检测上位性效应的能力。我们通过计算机模拟在广泛的现实遗传模型下研究了所提出的方法,这些模型具有不等距的标记间距和缺失数据。在标记间距离较大的情况下,我们根据Haley和Knott回归进行插补,以将搜索位置之间的距离减小到不超过10厘摩。Haley和Knott回归也用于处理缺失数据。模拟研究以及实际数据分析证明了所提出的QTL检测方法具有良好的性能。