Suppr超能文献

K+ channel KV3.1 associates with OSP/claudin-11 and regulates oligodendrocyte development.

作者信息

Tiwari-Woodruff Seema, Beltran-Parrazal Luis, Charles Andrew, Keck Thomas, Vu Trung, Bronstein Jeff

机构信息

UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA.

出版信息

Am J Physiol Cell Physiol. 2006 Oct;291(4):C687-98. doi: 10.1152/ajpcell.00510.2005. Epub 2006 Apr 19.

Abstract

K(+) channels are differentially expressed throughout oligodendrocyte (Olg) development. K(V)1 family voltage-sensitive K(+) channels have been implicated in proliferation and migration of Olg progenitor cell (OPC) stage, and inward rectifier K+ channels (K(IR))4.1 are required for OPC differentiation to myelin-forming Olg. In this report we have identified a Shaw family K(+) channel, K(V)3.1, that is involved in proliferation and migration of OPC and axon myelination. Application of anti-K(V)3.1 antibody or knockout of Kv3.1 gene decreased the sustained K(+) current component of OPC by 50% and 75%, respectively. In functional assays block of K(V)3.1-specific currents or knockout of Kv3.1 gene inhibited proliferation and migration of OPC. Adult Kv3.1 gene-knockout mice had decreased diameter of axons and decreased thickness of myelin in optic nerves compared with age-matched wild-type littermates. Additionally, K(V)3.1 was identified as an associated protein of Olg-specific protein (OSP)/claudin-11 via yeast two-hybrid analysis, which was confirmed by coimmunoprecipitation and coimmunohistochemistry. In summary, the K(V)3.1 K(+) current accounts for a significant component of the total K(+) current in cells of the Olg lineage and, in association with OSP/claudin-11, plays a significant role in OPC proliferation and migration and myelination of axons.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验