Gindensperger Etienne, Burghardt Irene, Cederbaum Lorenz S
Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany.
J Chem Phys. 2006 Apr 14;124(14):144103. doi: 10.1063/1.2183304.
The short-time dynamics through a conical intersection of a macrosystem comprising a large number of nuclear degrees of freedom (modes) is investigated. The macrosystem is decomposed into a "system" part carrying a limited number of modes, and an "environment" part. An orthogonal transformation in the environment's space is introduced, as a result of which a subset of three effective modes can be identified which couple directly to the electronic subsystem. Together with the system's modes, these govern the short-time dynamics of the overall macrosystem. The remaining environmental modes couple, in turn, to the effective modes and become relevant at longer times. In this paper, we present the derivation of the effective Hamiltonian, first introduced by Cederbaum et al. [Phys. Rev. Lett. 94, 113003 (2005)], and analyze its properties in some detail. Several special cases and topological aspects are discussed.
研究了包含大量核自由度(模式)的宏观系统通过锥形交叉点的短时间动力学。该宏观系统被分解为携带有限数量模式的“系统”部分和“环境”部分。引入了环境空间中的正交变换,结果可以识别出三个直接耦合到电子子系统的有效模式子集。与系统模式一起,这些模式支配着整个宏观系统的短时间动力学。其余的环境模式反过来耦合到有效模式,并在更长的时间尺度上变得相关。在本文中,我们给出了由塞德鲍姆等人首次引入的有效哈密顿量的推导[《物理评论快报》94, 113003 (2005)],并详细分析了其性质。讨论了几个特殊情况和拓扑方面的问题。