Suppr超能文献

聚合物表面之间的滑动摩擦:分子解释

Sliding friction between polymer surfaces: a molecular interpretation.

作者信息

Allegra Giuseppe, Raos Guido

机构信息

Dipartimento di Chimica, Materiali e Ingegneria Chimica G. Natta, Politecnico di Milano, Via L. Mancinelli 7, I-20131 Milano, Italy.

出版信息

J Chem Phys. 2006 Apr 14;124(14):144713. doi: 10.1063/1.2193509.

Abstract

For two contacting rigid bodies, the friction force F is proportional to the normal load and independent of the macroscopic contact area and relative velocity V (Amonton's law). With two mutually sliding polymer samples, the surface irregularities transmit deformation to the underlying material. Energy loss along the deformation cycles is responsible for the friction force, which now appears to depend strongly on V [see, e.g., N. Maeda et al., Science 297, 379 (2002)]. We base our theoretical interpretation on the assumption that polymer chains are mainly subjected to oscillatory "reptation" along their "tubes." At high deformation frequencies-i.e., with a large sliding velocity V-the internal viscosity due to the rotational energy barriers around chain bonds hinders intramolecular mobility. As a result, energy dissipation and the correlated friction force strongly diminish at large V. Derived from a linear differential equation for chain dynamics, our results are basically consistent with the experimental data by Maeda et al. [Science 297, 379 (2002)] on modified polystyrene. Although the bulk polymer is below T(g), we regard the first few chain layers below the surface to be in the liquid state. In particular, the observed maximum of F vs V is consistent with physically reasonable values of the molecular parameters. As a general result, the ratio FV is a steadily decreasing function of V, tending to V(-2) for large velocities. We evaluate a much smaller friction for a cross-linked polymer under the assumption that the junctions are effectively immobile, also in agreement with the experimental results of Maeda et al. [Science 297, 379 (2002)].

摘要

对于两个相互接触的刚体,摩擦力F与法向载荷成正比,且与宏观接触面积和相对速度V无关(阿蒙顿定律)。对于两个相互滑动的聚合物样品,表面不规则性会将变形传递到下层材料。沿变形循环的能量损失是摩擦力的原因,此时摩擦力似乎强烈依赖于V [例如,见N. 前田等人,《科学》297, 379 (2002)]。我们的理论解释基于这样的假设:聚合物链主要沿其“管”进行振荡“蠕动”。在高变形频率下——即大滑动速度V时——由于链键周围旋转能垒导致的内粘度会阻碍分子内迁移率。结果,在大V时能量耗散和相关的摩擦力会大幅减小。从链动力学的线性微分方程推导得出,我们的结果与前田等人[《科学》297, 379 (2002)]关于改性聚苯乙烯的实验数据基本一致。尽管本体聚合物低于玻璃化转变温度T(g),但我们认为表面以下的前几层链处于液态。特别是,观察到的F对V的最大值与分子参数的物理合理值一致。一般来说,FV比值是V的单调递减函数,在大速度时趋于V(-2)。在交联聚合物连接处有效固定的假设下,我们评估出的摩擦力要小得多,这也与前田等人[《科学》297, 379 (2002)]的实验结果一致。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验