Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
Science. 2020 Feb 7;367(6478):694-699. doi: 10.1126/science.aaw8653.
Prion-like domains (PLDs) can drive liquid-liquid phase separation (LLPS) in cells. Using an integrative biophysical approach that includes nuclear magnetic resonance spectroscopy, small-angle x-ray scattering, and multiscale simulations, we have uncovered sequence features that determine the overall phase behavior of PLDs. We show that the numbers (valence) of aromatic residues in PLDs determine the extent of temperature-dependent compaction of individual molecules in dilute solutions. The valence of aromatic residues also determines full binodals that quantify concentrations of PLDs within coexisting dilute and dense phases as a function of temperature. We also show that uniform patterning of aromatic residues is a sequence feature that promotes LLPS while inhibiting aggregation. Our findings lead to the development of a numerical stickers-and-spacers model that enables predictions of full binodals of PLDs from their sequences.
类朊病毒结构域 (PLD) 可在细胞中驱动液-液相分离 (LLPS)。我们采用了一种综合的生物物理方法,包括核磁共振波谱、小角 X 射线散射和多尺度模拟,揭示了决定 PLD 整体相行为的序列特征。我们表明,PLD 中芳香族残基的数量(价数)决定了单个分子在稀溶液中随温度变化的致密程度。芳香族残基的价数还决定了全双折射,全双折射定量地表示了共存的稀相和密相中的 PLD 浓度随温度的变化。我们还表明,芳香族残基的均匀图案化是促进 LLPS 同时抑制聚集的序列特征。我们的发现导致了一种数值贴纸和间隔物模型的发展,该模型能够从 PLD 的序列预测其全双折射。