Suppr超能文献

一种基于分类的大规模微阵列数据定量描述框架。

A classification based framework for quantitative description of large-scale microarray data.

作者信息

Sangurdekar Dipen P, Srienc Friedrich, Khodursky Arkady B

机构信息

Department of Chemical Engineering and Materials Science, University of Minnesota, Saint Paul, MN 55108, USA.

出版信息

Genome Biol. 2006;7(4):R32. doi: 10.1186/gb-2006-7-4-r32. Epub 2006 Apr 20.

Abstract

Genome-wide surveys of transcription depend on gene classifications for the purpose of data interpretation. We propose a new information-theoretical-based method to: assess significance of co-expression within any gene group; quantitatively describe condition-specific gene-class activity; and systematically evaluate conditions in terms of gene-class activity. We applied this technique to describe microarray data tracking Escherichia coli transcriptional responses to more than 30 chemical and physiological perturbations. We correlated the nature and breadth of the responses with the nature of perturbation, identified gene group proxies for the perturbation classes and quantitatively compared closely related physiological conditions.

摘要

全基因组转录调查依赖于基因分类来进行数据解释。我们提出了一种基于信息论的新方法,用于:评估任何基因组内共表达的显著性;定量描述特定条件下的基因类活性;以及根据基因类活性系统地评估条件。我们应用这项技术来描述追踪大肠杆菌对30多种化学和生理扰动的转录反应的微阵列数据。我们将反应的性质和广度与扰动的性质相关联,确定了扰动类别的基因组代理,并定量比较了密切相关的生理条件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e047/1557986/207af80d6447/gb-2006-7-4-r32-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验