Ostermeier Sven, Hurschler Christof, Windhagen Henning, Stukenborg-Colsman Christina
Orthopädische Klinik, Medizinische Hochschule Hannover (MHH), Klinik II im Annastift e.V., Anna-von-Borries-Strasse 1-7, 30625 Hannover, Germany.
Knee Surg Sports Traumatol Arthrosc. 2006 Oct;14(10):934-9. doi: 10.1007/s00167-006-0078-x. Epub 2006 Apr 21.
The purpose of this study was to investigate the influence of tibial base plate angulation on knee kinematics and kinetics during knee arthroplasty. The amount of quadriceps force required to extend the knee and the anteroposterior displacement of a mobile bearing insert as well as tibiofemoral position were measured during an in vitro simulation of an isokinetic knee extension cycle. Human knee specimens (n = 7, mean age 62, range 52-75 years, all male) were tested in a kinematic knee simulating machine after total knee arthroplasty (TKA) with a mobile bearing insert prosthesis (Interax), Stryker/Howmedica). During simulation, a hydraulic cylinder applied sufficient force to the quadriceps tendon to produce an extension moment of 31 N m about the knee. The quadriceps load was measured using a load cell attached to the quadriceps tendon, the anteroposterior displacement of the mobile bearing insert as well as the relative tibiofemoral position was measured using an ultrasound base motion analysis system (CMS 100, Zebris). Quadriceps load, insert and tibial displacement were first investigated with the tibial base plate implanted with a neutral tibial base plate orientation, and subsequently after 10 degrees posterior angulation. The quadriceps forces needed to produce a 31 N m knee extension moment after TKA with neutral slope reached levels as high as 1,391 N (SD 82 N). After applying a posterior slope of 10 degrees , maximum quadriceps force was measured to be up to 1,303 N (SD 34 N, P = 0.04). The mobile bearing insert was observed to move up to 0.1 mm (SD 4.2 mm) anteriorly relative to the tibial base plate with neutral tibial slope, and up to 1.0 mm (SD 4.5 mm, P = 0.47) with tibial slope. Femoral position relative to the tibia moved from a posterior position of 13.1 mm (SD 4.0 mm) anteriorly up to 0.5 mm (SD 6.3 mm), and from 16.0 mm (SD 6.4 mm, P = 0.67) to 9.5 mm (SD 9.9 mm, P = 0.33) with a 10 degrees tibial slope. Posterior slope of the tibial base plate resulted in a more physiologic insert movement with a more posterior position of the femur and reduced quadriceps force especially in knee flexion angles above 60 degrees compared to TKA with a neutral slope of the tibial base plate. Thus, the data suggest that the quadriceps lever arm was improved, which might have positive effect in mobilization of patients after TKA.
本研究的目的是调查胫骨基板角度对膝关节置换术中膝关节运动学和动力学的影响。在等速膝关节伸展周期的体外模拟过程中,测量了伸展膝关节所需的股四头肌力量、活动轴承垫片的前后位移以及胫股位置。在全膝关节置换术(TKA)后,使用活动轴承垫片假体(Interax,史赛克/豪美迪克),对人体膝关节标本(n = 7,平均年龄62岁,范围52 - 75岁,均为男性)在膝关节运动模拟机中进行测试。在模拟过程中,一个液压缸向股四头肌腱施加足够的力,以产生围绕膝关节31 N·m的伸展力矩。使用连接到股四头肌腱的测力传感器测量股四头肌负荷,使用超声基础运动分析系统(CMS 100,泽布里斯)测量活动轴承垫片的前后位移以及相对胫股位置。首先在植入中立胫骨基板方向的情况下研究股四头肌负荷、垫片和胫骨位移,随后在向后成角10度后进行研究。TKA后中立坡度时产生31 N·m膝关节伸展力矩所需的股四头肌力量达到高达1391 N(标准差82 N)的水平。在施加10度的后坡度后,测得的最大股四头肌力量高达1303 N(标准差34 N,P = 0.04)。观察到活动轴承垫片在胫骨中立坡度时相对于胫骨基板向前移动多达0.1 mm(标准差4.2 mm),在有胫骨坡度时向前移动多达1.0 mm(标准差4.5 mm,P = 0.47)。相对于胫骨,股骨位置从后方13.1 mm(标准差4.0 mm)向前移动到0.5 mm(标准差6.3 mm),在有10度胫骨坡度时从16.0 mm(标准差6.4 mm,P = 0.67)移动到9.5 mm(标准差9.9 mm,P = 0.33)。与胫骨基板中立坡度的TKA相比,胫骨基板的后坡度导致垫片运动更符合生理,股骨位置更靠后,股四头肌力量降低,尤其是在膝关节屈曲角度大于60度时。因此,数据表明股四头肌力臂得到改善,这可能对TKA后患者的活动有积极影响。