Flores-Moreno Roberto, Alvarez-Mendez Rodrigo J, Vela Alberto, Köster Andreas M
Departamento de Química, CINVESTAV, Avenida Instituto Politécnico Nacional 2508, A.P. 14-740 Mexico D.F. 07000, Mexico.
J Comput Chem. 2006 Jul 15;27(9):1009-19. doi: 10.1002/jcc.20410.
A half-numeric algorithm for the evaluation of effective core potential integrals over Cartesian Gaussian functions is described. Local and semilocal integrals are separated into two-dimensional angular and one-dimensional radial integrals. The angular integrals are evaluated analytically using a general approach that has no limitation for the l-quantum number. The radial integrals are calculated by an adaptive one-dimensional numerical quadrature. For the semilocal radial part a pretabulation scheme is used. This pretabulation simplifies the handling of radial integrals, makes their calculation much faster, and allows their easy reuse for different integrals within a given shell combination. The implementation of this new algorithm is described and its performance is analyzed.
描述了一种用于评估笛卡尔高斯函数上有效核势积分的半数值算法。局部和半局部积分被分离为二维角向积分和一维径向积分。角向积分使用一种对l量子数没有限制的通用方法进行解析评估。径向积分通过自适应一维数值求积法计算。对于半局部径向部分,使用预制表方案。这种预制表简化了径向积分的处理,使其计算速度大大加快,并允许在给定壳层组合内轻松地将其重新用于不同的积分。描述了这种新算法的实现并分析了其性能。