Suppr超能文献

最低抑菌浓度的群体分布——提高准确性和实用性。

Population distributions of minimum inhibitory concentration--increasing accuracy and utility.

作者信息

Lambert R J W, Lambert R

机构信息

R2-Scientific, Sharnbrook, Bedfordshire, UK.

出版信息

J Appl Microbiol. 2006 May;100(5):999-1010. doi: 10.1111/j.1365-2672.2006.02842.x.

Abstract

AIMS

To generate continuous minimum inhibitory concentration (MIC) data that describes the discrete nature of experimentally derived population MIC data.

METHODS AND RESULTS

A logistic model was fitted to experimentally derived MIC population cumulative distributions from clinical isolates of Haemophilus influenzae, Moraxella catarrhalis, Streptococcus pneumoniae and Staphylococcus aureus (European Committee on Antimicrobial Susceptibility Testing, BSAC and MYSTIC population susceptibility databases). From the model continuous distributions of population susceptibility were generated. The experimentally observed population distributions based on discrete MIC could be reproduced from this underlying continuous distribution. Monte Carlo (MC) simulation was used to confirm findings. Where the discrete experimental data contained few or no isolates with MIC greater or less than the antimicrobial concentration range tested, the true mean MIC was a factor of 0.707 times that normally reported and may be of little clinical significance. Where data contained isolates beyond the range of concentration used, the true MIC was dependent on the SD and the number of isolates and could be clinically significant. Subpopulations of differing susceptibilities could be modelled successfully using a modified logistic equation: this allows a more accurate examination of the data from these databases.

CONCLUSIONS

The mean MIC and SD of population data currently reported are incorrect as the method of obtaining such parameters relies on normally distributed data which current MIC population data are not.

SIGNIFICANCE AND IMPACT OF THE STUDY

Obtaining the distribution parameters from the underlying continuous distribution of MIC can be carried out using a simple logistic equation. MC simulation using these values allows easy visualization of the discrete data. The analyses of subpopulations within the data should increase the usefulness of horizontal studies.

摘要

目的

生成连续最小抑菌浓度(MIC)数据,以描述实验得出的群体MIC数据的离散特性。

方法与结果

对从流感嗜血杆菌、卡他莫拉菌、肺炎链球菌和金黄色葡萄球菌临床分离株(欧洲抗菌药物敏感性试验委员会、英国抗菌化疗学会和MYSTIC群体药敏数据库)实验得出的MIC群体累积分布拟合逻辑模型。从该模型生成群体药敏的连续分布。基于离散MIC的实验观察到的群体分布可从这一潜在连续分布中重现。采用蒙特卡洛(MC)模拟来证实研究结果。当离散实验数据中几乎没有或没有MIC高于或低于测试抗菌浓度范围的分离株时,真实平均MIC是通常报告值的0.707倍,可能临床意义不大。当数据包含超出所用浓度范围的分离株时,真实MIC取决于标准差和分离株数量,可能具有临床意义。使用修正的逻辑方程可成功模拟不同药敏的亚群:这有助于更准确地分析这些数据库中的数据。

结论

目前报告的群体数据的平均MIC和标准差是不正确的,因为获取此类参数的方法依赖于正态分布数据,而当前的MIC群体数据并非如此。

研究的意义和影响

使用简单的逻辑方程可从MIC的潜在连续分布中获取分布参数。使用这些值进行MC模拟可轻松直观显示离散数据。对数据中亚群的分析应会增加横向研究的实用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验