Duckworth Edward A M, Butler Tanya, Collier Lisa, Collier Shane, Pennypacker Keith R
Department of Neurological Surgery, University of South Florida College of Medicine, Tampa, FL 33612, USA.
Brain Res. 2006 May 9;1088(1):167-75. doi: 10.1016/j.brainres.2006.02.103. Epub 2006 Apr 21.
Knowledge about the molecular mechanisms of neuronal survival following ischemia is crucial to the development of therapeutic interventions for victims of stroke. Previous research in our laboratory has implicated nuclear factor-kappaB (NF-kappaB) as contributing to neuronal survival in response to toxic or ischemic brain insult, with in vivo models having focused on the rat. To take advantage of genetic alterations available in the mouse, we utilized a murine transient endovascular middle cerebral artery occlusion (MCAO) model to examine the influence of NF-kappaB on neuronal survival. When brains were immunostained for the nuclear localization sequence (NLS) of the p50 subunit of NF-kappaB, a unilateral increase in immunoreactivity was seen, especially in pyramidal cell layers of the ipsilateral (stroked) hippocampus. When transgenic mice lacking p50 were compared with non-transgenic counterparts using Fluoro-Jade, a marker for neurodegeneration, both the hippocampus and striatum showed enhanced neurodegeneration at various survival times after 1 h of MCAO. In the hippocampus specifically, there was an eightfold increase in Fluoro-jade staining in the p50 knockout group vs. the non-transgenic group. Sections double stained for Fluoro-Jade and NF-kappaB activity (using a mouse engineered with a NF-kappaB responsive promoter driving a LacZ gene to produce beta galactosidase) demonstrated neuronal degeneration only in regions sparsely showing NF-kappaB activity, and those demonstrating NF-kappaB activity failed to degenerate. These data provide evidence that NF-kappaB participates in survival signaling following temporary focal ischemia, and thus may represent an attractive target for pharmacologic activation in the treatment of stroke.
了解缺血后神经元存活的分子机制对于开发中风患者的治疗干预措施至关重要。我们实验室之前的研究表明,核因子-κB(NF-κB)有助于神经元在应对毒性或缺血性脑损伤时存活,体内模型主要集中在大鼠上。为了利用小鼠中可用的基因改变,我们使用了小鼠短暂性血管内大脑中动脉闭塞(MCAO)模型来研究NF-κB对神经元存活的影响。当对大脑进行NF-κB p50亚基的核定位序列(NLS)免疫染色时,观察到免疫反应性单侧增加,特别是在同侧(中风侧)海马的锥体细胞层。当使用神经退行性变标志物Fluoro-Jade将缺乏p50的转基因小鼠与非转基因对照小鼠进行比较时,在MCAO 1小时后的不同存活时间,海马和纹状体均显示出增强的神经退行性变。特别是在海马中,p50基因敲除组的Fluoro-Jade染色比非转基因组增加了八倍。对Fluoro-Jade和NF-κB活性进行双重染色的切片(使用一种经过基因工程改造的小鼠,其具有驱动LacZ基因产生β半乳糖苷酶的NF-κB反应性启动子)显示,仅在稀疏显示NF-κB活性的区域存在神经元变性,而显示NF-κB活性的区域未发生变性。这些数据提供了证据,表明NF-κB参与了短暂性局灶性缺血后的存活信号传导,因此可能是中风治疗中药物激活的一个有吸引力的靶点。