Talibi Alaoui Hamad, Yafia Radouane
Université Chouaib Doukkali Faculté des Sciences, Département de Mathématiques et Informatique, El Jadida, Morocco.
Math Biosci. 2007 Apr;206(2):176-84. doi: 10.1016/j.mbs.2006.03.004. Epub 2006 Apr 24.
We consider the haematopoietic stem cells model (HSC) with one delay introduced by Mackey [M.C. Mackey, Unified hypothesis for the origin of aplastic anemia and periodic hematopoiesis, blood 51 (1978) 5; M.C. Mackey, Mathematical models of haematopoietic cell replication and control, in: The Art of Mathematical Modelling: Case Studies in Ecology, Physiology and Biofluids, H.G. Othmer, F.R. Adler, M.A. Lewis, J.C. Dallon (Eds), Prentice-Hall, New York, 1997, p. 149] and Andersen and Mackey [L.K. Andersen, M.C. Mackey, Resonance in periodic chemotherapy: a case study of acute myelogenous leukemia, J. theor. Biol. 209 (2001) 113]. There are two possible stationary states in the model. One of them is trivial and the second E( *)(tau) depending on the delay is non-trivial . This paper investigates the stability of the non-trivial state and occurrence of the Hopf bifurcation depending on time delay. We prove the existence and uniqueness of a critical values tau(0) and tau of the delay such that E( *)(tau) is asymptotically stable for tau<tau(0) and unstable for tau(0)<tau<tau . We show that E( *)(tau(0)) is a Hopf bifurcation critical point for an approachable model.
我们考虑由麦基[M.C. 麦基,再生障碍性贫血起源和周期性造血的统一假说,《血液》51 (1978) 5;M.C. 麦基,造血细胞复制与控制的数学模型,载于:《数学建模艺术:生态学、生理学和生物流体中的案例研究》,H.G. 奥特默、F.R. 阿德勒、M.A. 刘易斯、J.C. 达隆(编),普伦蒂斯 - 霍尔出版社,纽约,1997,第149页]以及安德森和麦基[L.K. 安德森、M.C. 麦基,周期性化疗中的共振:急性髓性白血病的案例研究,《理论生物学杂志》209 (2001) 113]引入的具有一个时滞的造血干细胞模型(HSC)。该模型存在两种可能的稳态。其中一种是平凡稳态,另一种取决于时滞的非平凡稳态E()(τ)。本文研究非平凡稳态的稳定性以及取决于时间延迟的霍普夫分岔的出现情况。我们证明了时滞的临界值τ(0)和τ的存在性与唯一性,使得对于τ < τ(0),E()(τ)是渐近稳定的,而对于τ(0) < τ < τ是不稳定的。我们表明E(*)(τ(0))对于一个可逼近模型是一个霍普夫分岔临界点。