Suppr超能文献

一种用于转录调控机制定量推断的概率动力学模型。

A probabilistic dynamical model for quantitative inference of the regulatory mechanism of transcription.

作者信息

Sanguinetti Guido, Rattray Magnus, Lawrence Neil D

机构信息

Department of Computer Science, Regent Court, 211 Portobello Road, Sheffield S1 4DP, UK.

出版信息

Bioinformatics. 2006 Jul 15;22(14):1753-9. doi: 10.1093/bioinformatics/btl154. Epub 2006 Apr 21.

Abstract

MOTIVATION

Quantitative estimation of the regulatory relationship between transcription factors and genes is a fundamental stepping stone when trying to develop models of cellular processes. This task, however, is difficult for a number of reasons: transcription factors' expression levels are often low and noisy, and many transcription factors are post-transcriptionally regulated. It is therefore useful to infer the activity of the transcription factors from the expression levels of their target genes.

RESULTS

We introduce a novel probabilistic model to infer transcription factor activities from microarray data when the structure of the regulatory network is known. The model is based on regression, retaining the computational efficiency to allow genome-wide investigation, but is rendered more flexible by sampling regression coefficients independently for each gene. This allows us to determine the strength with which a transcription factor regulates each of its target genes, therefore providing a quantitative description of the transcriptional regulatory network. The probabilistic nature of the model also means that we can associate credibility intervals to our estimates of the activities. We demonstrate our model on two yeast datasets. In both cases the network structure was obtained using chromatin immunoprecipitation data. We show how predictions from our model are consistent with the underlying biology and offer novel quantitative insights into the regulatory structure of the yeast cell.

AVAILABILITY

MATLAB code is available from http://umber.sbs.man.ac.uk/resources/puma.

摘要

动机

在尝试构建细胞过程模型时,对转录因子与基因之间调控关系进行定量估计是一个基本的垫脚石。然而,由于多种原因,这项任务具有挑战性:转录因子的表达水平通常较低且存在噪声,并且许多转录因子受到转录后调控。因此,从其靶基因的表达水平推断转录因子的活性是很有用的。

结果

当调控网络结构已知时,我们引入了一种新颖的概率模型,用于从微阵列数据推断转录因子的活性。该模型基于回归,保留了计算效率以允许进行全基因组研究,但通过为每个基因独立采样回归系数而变得更加灵活。这使我们能够确定转录因子调控其每个靶基因的强度,从而提供转录调控网络的定量描述。该模型的概率性质还意味着我们可以将可信区间与活性估计相关联。我们在两个酵母数据集上展示了我们的模型。在这两种情况下,网络结构都是使用染色质免疫沉淀数据获得的。我们展示了我们模型的预测如何与基础生物学一致,并为酵母细胞的调控结构提供了新的定量见解。

可用性

MATLAB代码可从http://umber.sbs.man.ac.uk/resources/puma获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验