Suppr超能文献

TIGERi:转录因子网络扰动响应的建模与可视化

TIGERi: modeling and visualizing the responses to perturbation of a transcription factor network.

作者信息

Han Namshik, Noyes Harry A, Brass Andy

机构信息

Gurdon Institute, University of Cambridge, Cambridge, UK.

School of Computer Science and School of Health Sciences, University of Manchester, Manchester, UK.

出版信息

BMC Bioinformatics. 2017 May 31;18(Suppl 7):260. doi: 10.1186/s12859-017-1636-6.

Abstract

BACKGROUND

Transcription factor (TF) networks play a key role in controlling the transfer of genetic information from gene to mRNA. Much progress has been made on understanding and reverse-engineering TF network topologies using a range of experimental and theoretical methodologies. Less work has focused on using these models to examine how TF networks respond to changes in the cellular environment.

METHODS

In this paper, we have developed a simple, pragmatic methodology, TIGERi (Transcription-factor-activity Illustrator for Global Explanation of Regulatory interaction), to model the response of an inferred TF network to changes in cellular environment. The methodology was tested using publicly available data comparing gene expression profiles of a mouse p38α (Mapk14) knock-out line to the original wild-type.

RESULTS

Using the model, we have examined changes in the TF network resulting from the presence or absence of p38α. A part of this network was confirmed by experimental work in the original paper. Additional relationships were identified by our analysis, for example between p38α and HNF3, and between p38α and SOX9, and these are strongly supported by published evidence. FXR and MYC were also discovered in our analysis as two novel links of p38α. To provide a computational methodology to the biomedical communities that has more user-friendly interface, we also developed a standalone GUI (graphical user interface) software for TIGERi and it is freely available at https://github.com/namshik/tigeri/ .

CONCLUSIONS

We therefore believe that our computational approach can identify new members of networks and new interactions between members that are supported by published data but have not been integrated into the existing network models. Moreover, ones who want to analyze their own data with TIGERi could use the software without any command line experience. This work could therefore accelerate researches in transcriptional gene regulation in higher eukaryotes.

摘要

背景

转录因子(TF)网络在控制遗传信息从基因到信使核糖核酸(mRNA)的传递过程中起着关键作用。运用一系列实验和理论方法,在理解和逆向工程TF网络拓扑结构方面已取得了很大进展。较少有工作聚焦于利用这些模型来研究TF网络如何响应细胞环境的变化。

方法

在本文中,我们开发了一种简单、实用的方法,即TIGERi(用于全局解释调控相互作用的转录因子活性说明器),以模拟推断出的TF网络对细胞环境变化的响应。该方法通过使用公开可用的数据进行测试,这些数据比较了小鼠p38α(丝裂原活化蛋白激酶14,Mapk14)基因敲除系与原始野生型的基因表达谱。

结果

利用该模型,我们研究了p38α存在或缺失导致的TF网络变化。原始论文中的实验工作证实了该网络的一部分。我们的分析还识别出了其他关系,例如p38α与肝细胞核因子3(HNF3)之间以及p38α与性别决定区Y框蛋白9(SOX9)之间的关系,并且这些关系得到了已发表证据的有力支持。在我们的分析中还发现法尼醇X受体(FXR)和原癌基因Myc(MYC)是p38α的两个新联系。为了向生物医学领域提供一种具有更用户友好界面的计算方法,我们还为TIGERi开发了一个独立的图形用户界面(GUI)软件,可在https://github.com/namshik/tigeri/上免费获取。

结论

因此,我们相信我们的计算方法能够识别网络中的新成员以及成员之间新的相互作用,这些相互作用虽有已发表的数据支持,但尚未整合到现有的网络模型中。此外,想要使用TIGERi分析自己数据的人无需任何命令行经验即可使用该软件。因此,这项工作可以加速高等真核生物中转录基因调控的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc03/5471961/557bb7f62aee/12859_2017_1636_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验