Suppr超能文献

哺乳动物细胞培养中荧光示踪剂的间隙连接单通道通透性。

Gap-junctional single-channel permeability for fluorescent tracers in mammalian cell cultures.

作者信息

Eckert Reiner

机构信息

Abteilung Biophysik, Biologisches Institut, Universität Stuttgart, Stuttgart, Germany.

出版信息

Biophys J. 2006 Jul 15;91(2):565-79. doi: 10.1529/biophysj.105.072306. Epub 2006 Apr 21.

Abstract

We have developed a simple dye transfer method that allows quantification of the gap-junction permeability of small cultured cells. Fluorescent dyes (calcein and Lucifer yellow) were perfused into one cell of an isolated cell pair using a patch-type micropipette in the tight-seal whole cell configuration. Dye spreading into the neighboring cells was monitored using a low-light charge-coupled device camera. Permeation rates for calcein and Lucifer yellow were then estimated by fitting the time course of the fluorescence intensities in both cells. For curve fitting, we used a set of model equations derived from a compartment model of dye distribution. The permeation rates were correlated to the total ionic conductance of the gap junction measured immediately after the perfusion experiment. Assuming that dye permeation is through a unit-conductance channel, we were then able to calculate the single-channel permeance for each tracer dye. We have applied this technique to HeLa cells stably transfected with rat-Cx46 and Cx43, and to BICR/M1R(k) cells, a rat mammary tumor cell line that has very high dye coupling through endogenous Cx43 channels. Scatter plots of permeation rates versus junctional conductance did not show a strictly linear correlation of ionic versus dye permeance, as would have been expected for a simple pore. Instead, we found that the data scatter within a wide range of different single-channel permeances. In BICR/M1R(k) cells, the lower limiting single-channel permeance is 2.2 +/- 2.0 x 10(-12) mm3/s and the upper limit is 50 x 10(-12) mm3/s for calcein and 6.8 +/- 2.8 x 10(-12) mm3/s and 150 x 10(-12) mm3/s for Lucifer yellow, respectively. In HeLa-Cx43 transfectants we found 2.0 +/- 2.4 x 10(-12) mm3/s and 95 x 10(-12) mm3/s for calcein and 2.1 +/- 6.8 x 10(-12) mm3/s and 80 x 10(-12) mm3/s for Lucifer yellow, and in HeLa-Cx46 transfectants 1.7 +/- 0.3 x 10(-12) mm3/s and 120 x 10(-12) mm3/s for calcein and 1.3 +/- 1.1 x 10(-12) mm3/s and 34 x 10(-12) mm3/s for Lucifer yellow, respectively. This variability is most likely due to a yet unknown mechanism that differentially regulates single-channel permeability for larger molecules and for small inorganic ions.

摘要

我们开发了一种简单的染料转移方法,可对培养的小细胞的间隙连接通透性进行定量分析。使用膜片型微量移液器,在全细胞紧密封接模式下,将荧光染料(钙黄绿素和路西法黄)灌注到分离的细胞对中的一个细胞内。使用低光电荷耦合器件相机监测染料向相邻细胞的扩散情况。然后通过拟合两个细胞中荧光强度的时间进程来估算钙黄绿素和路西法黄的渗透速率。为进行曲线拟合,我们使用了一组从染料分布的隔室模型推导而来的模型方程。渗透速率与灌注实验后立即测量的间隙连接的总离子电导相关。假设染料渗透是通过单位电导通道进行的,我们随后能够计算每种示踪染料的单通道通透率。我们已将此技术应用于稳定转染了大鼠Cx46和Cx43的HeLa细胞,以及BICR/M1R(k)细胞,这是一种大鼠乳腺肿瘤细胞系,通过内源性Cx43通道具有非常高的染料偶联。渗透速率与连接电导的散点图并未显示离子与染料通透率之间存在如简单孔道所预期的严格线性相关性。相反,我们发现数据在广泛的不同单通道通透率范围内分散。在BICR/M1R(k)细胞中,钙黄绿素的下限单通道通透率为2.2±2.0×10⁻¹²立方毫米/秒,上限为50×10⁻¹²立方毫米/秒;路西法黄的下限为6.8±2.8×10⁻¹²立方毫米/秒,上限为150×10⁻¹²立方毫米/秒。在HeLa - Cx43转染细胞中,钙黄绿素的下限为分别为2.0±2.4×10⁻¹²立方毫米/秒和95×10⁻¹²立方毫米/秒;路西法黄的下限为2.1±6.8×10⁻¹²立方毫米/秒和80×10⁻¹²立方毫米/秒。在HeLa - Cx46转染细胞中,钙黄绿素的下限为1.7±0.3×10⁻¹²立方毫米/秒和120×10⁻¹²立方毫米/秒;路西法黄的下限为1.3±1.1×10⁻¹²立方毫米/秒和34×10⁻¹²立方毫米/秒。这种变异性很可能是由于一种未知机制造成的,该机制对较大分子和小无机离子的单通道通透性进行差异调节。

相似文献

8
10
Quantitative determination of gap junctional permeability in the lens cortex.
J Membr Biol. 1999 May 15;169(2):91-102. doi: 10.1007/s002329900521.

引用本文的文献

本文引用的文献

2
Quantification of gap junction selectivity.缝隙连接选择性的定量分析。
Am J Physiol Cell Physiol. 2005 Dec;289(6):C1535-46. doi: 10.1152/ajpcell.00182.2005. Epub 2005 Aug 10.
5
Selective permeability of gap junction channels.间隙连接通道的选择性通透性。
Biochim Biophys Acta. 2004 Mar 23;1662(1-2):96-101. doi: 10.1016/j.bbamem.2003.11.022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验