Kompier Nine F, Siemonsmeier Gabrielle, Meyer Niklas, Kettenmann Helmut, Rathjen Fritz G
Cellular Neurosciences, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
Bio Protoc. 2025 Feb 20;15(4):e5220. doi: 10.21769/BioProtoc.5220.
Gap junctions are transmembrane protein channels that enable the exchange of small molecules such as ions, second messengers, and metabolites between adjacent cells. Gap junctions are found in various mammalian organs, including skin, endothelium, liver, pancreas, muscle, and central nervous system (CNS). In the CNS, they mediate coupling between neural cells including glial cells, and the resulting panglial networks are vital for brain homeostasis. Tracers of sufficiently small molecular mass can diffuse across gap junctions and are used to visualize the extent of cell-to-cell coupling in situ by delivering them to a single cell through sharp electrodes or patch-clamp micropipettes. Here, we describe a protocol for pre-labeling and identification of astrocytes in acute mouse forebrain slices using Sulforhodamine 101 (SR101). Fluorescent cells can then be targeted for whole-cell patch-clamp, which allows for further confirmation of astroglial identity by assessing their electrophysiological properties, as well as for passive dialysis with a tracer such as biocytin. Slices can then be subjected to chemical fixation and immunostaining to detect dye-coupled networks. This protocol provides a method for the identification of astrocytes in live tissue through SR101 labeling. Alternatively, transgenic reporter mice can also be used to identify astrocytes. While we illustrate the use of this protocol for the study of glial networks in the mouse brain, the general principles are applicable to other species, tissues, and cell types. Key features • Pre-labeling of live astrocytes in acute adult mouse brain slices using the dye Sulforhodamine 101. • Dialysis of biocytin into individual astrocytes using whole-cell patch-clamp electrophysiology. • Staining of biocytin by streptavidin and immunostaining of GFAP, imaging, and analysis of dye-coupled astrocytic networks. • Can be used for other glial cell types and might be adapted to other tissues and species.
缝隙连接是跨膜蛋白通道,能够使离子、第二信使和代谢物等小分子在相邻细胞之间进行交换。缝隙连接存在于各种哺乳动物器官中,包括皮肤、内皮、肝脏、胰腺、肌肉和中枢神经系统(CNS)。在中枢神经系统中,它们介导包括神经胶质细胞在内的神经细胞之间的耦联,由此形成的全神经胶质网络对于脑内稳态至关重要。分子量足够小的示踪剂可以扩散穿过缝隙连接,通过尖锐电极或膜片钳微吸管将其递送至单个细胞,从而用于在原位可视化细胞间耦联的程度。在此,我们描述了一种使用磺基罗丹明101(SR101)对急性小鼠前脑切片中的星形胶质细胞进行预标记和鉴定的方案。然后可以将荧光细胞作为全细胞膜片钳的目标,通过评估其电生理特性进一步确认星形胶质细胞的身份,以及使用生物胞素等示踪剂进行被动透析。然后可以对切片进行化学固定和免疫染色以检测染料耦联网络。该方案提供了一种通过SR101标记在活组织中鉴定星形胶质细胞的方法。另外,转基因报告小鼠也可用于鉴定星形胶质细胞。虽然我们阐述了该方案在小鼠脑胶质网络研究中的应用,但一般原则适用于其他物种、组织和细胞类型。关键特性 • 使用染料磺基罗丹明101对急性成年小鼠脑切片中的活星形胶质细胞进行预标记。 • 使用全细胞膜片钳电生理技术将生物胞素透析到单个星形胶质细胞中。 • 用链霉亲和素对生物胞素进行染色,对胶质纤维酸性蛋白(GFAP)进行免疫染色,对染料耦联的星形胶质细胞网络进行成像和分析。 • 可用于其他胶质细胞类型,也可能适用于其他组织和物种。