Suppr超能文献

通过诱变和分子建模对RAMP1结构进行表征。

Characterization of the structure of RAMP1 by mutagenesis and molecular modeling.

作者信息

Simms John, Hay Debbie L, Wheatley Mark, Poyner David R

机构信息

School of Life and Health Sciences, Aston University, Birmingham, United Kingdom.

出版信息

Biophys J. 2006 Jul 15;91(2):662-9. doi: 10.1529/biophysj.106.084582. Epub 2006 Apr 21.

Abstract

Receptor activity modifying proteins (RAMPs) are a family of single-pass transmembrane proteins that dimerize with G-protein-coupled receptors. They may alter the ligand recognition properties of the receptors (particularly for the calcitonin receptor-like receptor, CLR). Very little structural information is available about RAMPs. Here, an ab initio model has been generated for the extracellular domain of RAMP1. The disulfide bond arrangement (Cys27-Cys82, Cys40-Cys72, and Cys57-Cys104) was determined by site-directed mutagenesis. The secondary structure (alpha-helices from residues 29-51, 60-80, and 87-100) was established from a consensus of predictive routines. Using these constraints, an assemblage of 25,000 structures was constructed and these were ranked using an all-atom statistical potential. The best 1000 conformations were energy minimized. The lowest scoring model was refined by molecular dynamics simulation. To validate our strategy, the same methods were applied to three proteins of known structure; PDB:1HP8, PDB:1V54 chain H (residues 21-85), and PDB:1T0P. When compared to the crystal structures, the models had root mean-square deviations of 3.8 A, 4.1 A, and 4.0 A, respectively. The model of RAMP1 suggested that Phe93, Tyr100, and Phe101 form a binding interface for CLR, whereas Trp74 and Phe92 may interact with ligands that bind to the CLR/RAMP1 heterodimer.

摘要

受体活性修饰蛋白(RAMPs)是一类单次跨膜蛋白家族,可与G蛋白偶联受体二聚化。它们可能会改变受体的配体识别特性(特别是对于降钙素受体样受体,CLR)。关于RAMPs的结构信息非常少。在此,已为RAMP1的胞外域生成了一个从头算模型。通过定点诱变确定了二硫键排列(Cys27-Cys82、Cys40-Cys72和Cys57-Cys104)。二级结构(来自残基29-51、60-80和87-100的α螺旋)是根据预测程序的共识确定的。利用这些限制条件,构建了25000个结构的集合,并使用全原子统计势对它们进行排序。对得分最高的1000个构象进行了能量最小化。通过分子动力学模拟对得分最低的模型进行了优化。为了验证我们的策略,将相同的方法应用于三种已知结构的蛋白质;PDB:1HP8、PDB:1V54链H(残基21-85)和PDB:1T0P。与晶体结构相比,这些模型的均方根偏差分别为3.8 Å、4.1 Å和4.0 Å。RAMP1模型表明,Phe93、Tyr100和Phe101形成了CLR的结合界面,而Trp74和Phe92可能与结合到CLR/RAMP1异二聚体的配体相互作用。

相似文献

1
Characterization of the structure of RAMP1 by mutagenesis and molecular modeling.
Biophys J. 2006 Jul 15;91(2):662-9. doi: 10.1529/biophysj.106.084582. Epub 2006 Apr 21.
2
Structure-function analysis of RAMP1-RAMP3 chimeras.
Biochemistry. 2010 Jan 26;49(3):522-31. doi: 10.1021/bi9019093.
4
Structure-function analysis of RAMP1 by alanine mutagenesis.
Biochemistry. 2009 Jan 13;48(1):198-205. doi: 10.1021/bi801869n.
6
A critical role for the short intracellular C terminus in receptor activity-modifying protein function.
Mol Pharmacol. 2006 Nov;70(5):1750-60. doi: 10.1124/mol.106.024257. Epub 2006 Aug 15.
7
Structural Basis for Receptor Activity-Modifying Protein-Dependent Selective Peptide Recognition by a G Protein-Coupled Receptor.
Mol Cell. 2015 Jun 18;58(6):1040-52. doi: 10.1016/j.molcel.2015.04.018. Epub 2015 May 14.
8
Structure-function relationships of the N-terminus of receptor activity-modifying proteins.
Br J Pharmacol. 2010 Mar;159(5):1059-68. doi: 10.1111/j.1476-5381.2009.00541.x. Epub 2009 Dec 10.
10
Mapping the CGRP receptor ligand binding domain: tryptophan-84 of RAMP1 is critical for agonist and antagonist binding.
Biochem Biophys Res Commun. 2010 Mar 26;394(1):141-5. doi: 10.1016/j.bbrc.2010.02.131. Epub 2010 Feb 24.

引用本文的文献

1
Calcitonin gene-related peptide: physiology and pathophysiology.
Physiol Rev. 2014 Oct;94(4):1099-142. doi: 10.1152/physrev.00034.2013.
2
Targeting a family B GPCR/RAMP receptor complex: CGRP receptor antagonists and migraine.
Br J Pharmacol. 2012 May;166(1):66-78. doi: 10.1111/j.1476-5381.2011.01633.x.
3
CGRP induction in cystic fibrosis airways alters the submucosal gland progenitor cell niche in mice.
J Clin Invest. 2011 Aug;121(8):3144-58. doi: 10.1172/JCI41857. Epub 2011 Jul 18.
4
Structure-function relationships of the N-terminus of receptor activity-modifying proteins.
Br J Pharmacol. 2010 Mar;159(5):1059-68. doi: 10.1111/j.1476-5381.2009.00541.x. Epub 2009 Dec 10.
6
Crystal structure of the human receptor activity-modifying protein 1 extracellular domain.
Protein Sci. 2008 Nov;17(11):1907-14. doi: 10.1110/ps.036012.108. Epub 2008 Aug 25.

本文引用的文献

1
Improving efficiency of large time-scale molecular dynamics simulations of hydrogen-rich systems.
J Comput Chem. 1999 Jun;20(8):786-798. doi: 10.1002/(SICI)1096-987X(199906)20:8<786::AID-JCC5>3.0.CO;2-B.
2
Principal pathway coupling agonist binding to channel gating in nicotinic receptors.
Nature. 2005 Nov 10;438(7065):243-7. doi: 10.1038/nature04156.
3
Improving disulfide connectivity prediction with sequential distance between oxidized cysteines.
Bioinformatics. 2005 Dec 15;21(24):4416-9. doi: 10.1093/bioinformatics/bti715. Epub 2005 Oct 13.
4
5
GPCR modulation by RAMPs.
Pharmacol Ther. 2006 Jan;109(1-2):173-97. doi: 10.1016/j.pharmthera.2005.06.015. Epub 2005 Aug 18.
6
Heterodimerization of g protein-coupled receptors: specificity and functional significance.
Pharmacol Rev. 2005 Sep;57(3):289-98. doi: 10.1124/pr.57.3.1.
7
SCRATCH: a protein structure and structural feature prediction server.
Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W72-6. doi: 10.1093/nar/gki396.
8
DiANNA: a web server for disulfide connectivity prediction.
Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W230-2. doi: 10.1093/nar/gki412.
9
An improved hidden Markov model for transmembrane protein detection and topology prediction and its applications to complete genomes.
Bioinformatics. 2005 May 1;21(9):1853-8. doi: 10.1093/bioinformatics/bti303. Epub 2005 Feb 2.
10
GDAP: a web tool for genome-wide protein disulfide bond prediction.
Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W360-4. doi: 10.1093/nar/gkh376.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验