Suppr超能文献

使用经验贝叶斯方法调整微阵列表达数据中的批次效应。

Adjusting batch effects in microarray expression data using empirical Bayes methods.

作者信息

Johnson W Evan, Li Cheng, Rabinovic Ariel

机构信息

Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA.

出版信息

Biostatistics. 2007 Jan;8(1):118-27. doi: 10.1093/biostatistics/kxj037. Epub 2006 Apr 21.

Abstract

Non-biological experimental variation or "batch effects" are commonly observed across multiple batches of microarray experiments, often rendering the task of combining data from these batches difficult. The ability to combine microarray data sets is advantageous to researchers to increase statistical power to detect biological phenomena from studies where logistical considerations restrict sample size or in studies that require the sequential hybridization of arrays. In general, it is inappropriate to combine data sets without adjusting for batch effects. Methods have been proposed to filter batch effects from data, but these are often complicated and require large batch sizes ( > 25) to implement. Because the majority of microarray studies are conducted using much smaller sample sizes, existing methods are not sufficient. We propose parametric and non-parametric empirical Bayes frameworks for adjusting data for batch effects that is robust to outliers in small sample sizes and performs comparable to existing methods for large samples. We illustrate our methods using two example data sets and show that our methods are justifiable, easy to apply, and useful in practice. Software for our method is freely available at: http://biosun1.harvard.edu/complab/batch/.

摘要

在多批次微阵列实验中,经常会观察到非生物学实验变异或“批次效应”,这常常使合并这些批次数据的任务变得困难。合并微阵列数据集的能力对研究人员来说是有利的,有助于提高统计功效,以便从那些因后勤因素限制样本量的研究中,或从需要对阵列进行顺序杂交的研究中检测生物学现象。一般来说,在不调整批次效应的情况下合并数据集是不合适的。已经有人提出了从数据中过滤批次效应的方法,但这些方法通常很复杂,并且需要较大的批次规模(>25)才能实施。由于大多数微阵列研究使用的样本量要小得多,现有的方法并不适用。我们提出了参数化和非参数化经验贝叶斯框架,用于调整数据的批次效应,该框架对小样本量中的异常值具有鲁棒性,并且在大样本情况下的表现与现有方法相当。我们使用两个示例数据集说明了我们的方法,并表明我们的方法合理、易于应用且在实践中有用。我们方法的软件可在以下网址免费获取:http://biosun1.harvard.edu/complab/batch/

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验