Kislik G, Fox R, Korotcov A V, Zhou J, Febo M, Moghadas Babak, Bibic Adnan, Zou Yunfan, Wan Jieru, Koehler R C, Adebayo T, Burns M P, McCabe J T, Wang K K, Huie J R, Ferguson A R, Paydar A, Wanner I B, Harris N G
UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, University of California at Los Angeles, Los Angeles, CA, United States.
Department of Radiology & Bioengineering, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.
Front Neurol. 2025 Aug 20;16:1612598. doi: 10.3389/fneur.2025.1612598. eCollection 2025.
Multi-site neuroimaging studies have become increasingly common in order to generate larger samples of reproducible data to answer questions associated with smaller effect sizes. The data harmonization model NeuroCombat has been shown to remove site effects introduced by differences in site-related technical variance while maintaining group differences, yet its effect on improving statistical power in pre-clinical models of CNS disease is unclear. The present study examined fractional anisotropy data computed from diffusion weighted imaging data at 3 and 30 days post-controlled cortical impact injury from 184 adult rats across four sites as part of the Translational-Outcome-Project-in-Neurotrauma (TOP-NT) Consortium. Findings supported prior clinical reports that NeuroCombat fails to remove site effects in data containing a high proportion-of-outliers (>5%) and skewness, which introduced significant variation in non-outlier sites. After removal of one outlier site and harmonization using a pooled sham population, the data displayed an increase in effect size and group level effects ( < 0.01) in both univariate and voxel-level volumes of pathology. This was characterized by movement toward similar distributions in voxel measurements (Kolmogorov-Smirnov < <0.001 to >0.01) and statistical power increases within the ipsilateral cortex. Harmonization improved statistical power and frequency of significant differences in areas with existing group differences, thus improving the ability to detect regions affected by injury rather than by other confounds. These findings indicate the utility of NeuroCombat in reproducible data collection, where biological differences can be accurately revealed to allow for greater reliability in multi-site neuroimaging studies.
多中心神经影像学研究越来越普遍,目的是生成更大样本的可重复数据,以回答与较小效应量相关的问题。数据协调模型NeuroCombat已被证明可以消除由与部位相关的技术差异所引入的部位效应,同时保持组间差异,但其对提高中枢神经系统疾病临床前模型统计效力的影响尚不清楚。本研究检查了来自四个部位的184只成年大鼠在控制性皮质撞击损伤后3天和30天从扩散加权成像数据计算得到的分数各向异性数据,作为神经创伤转化结果项目(TOP-NT)联盟的一部分。研究结果支持了先前的临床报告,即NeuroCombat无法消除包含高比例异常值(>5%)和偏度的数据中的部位效应,这在非异常值部位引入了显著差异。在去除一个异常值部位并使用合并的假手术组进行协调后,数据在单变量和体素水平的病理学体积中均显示效应量和组水平效应增加(<0.01)。这表现为体素测量中的分布向相似方向移动(Kolmogorov-Smirnov<0.001至>0.01),并且同侧皮质内的统计效力增加。协调提高了具有现有组间差异区域的统计效力和显著差异的频率,从而提高了检测受损伤而非其他混杂因素影响区域的能力。这些发现表明NeuroCombat在可重复数据收集中的效用,可以准确揭示生物学差异,从而在多中心神经影像学研究中实现更高的可靠性。