Tautermann Christofer S, Clary David C
Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, UKOX1 3QZ.
Phys Chem Chem Phys. 2006 Mar 28;8(12):1437-44. doi: 10.1039/b513577j. Epub 2006 Feb 22.
Different ruthenium clusters of various sizes are constructed with the aim to model the Ru(0001) surface with a sufficient accuracy for predicting catalysis by hybrid density functional methods (B3LYP). As an example reaction the hydrogenation step N(ads) + H(ads) --> NH(ads) from the catalytic production cycle of ammonia is chosen. A cluster of 12 ruthenium atoms is found to reproduce experimental geometries and frequencies of the various reactants on the surface satisfyingly. To get the geometries of adsorbed hydrogen qualitatively correct it is shown that second layer atoms have to be included in the model cluster. Boundary effects are believed to have minor effects on optimized geometries, whereas the effects on reaction barriers are significant. A comparison of model cluster calculations to a periodic supercell approach employing plane waves and density functional methods (RPBE) reveals similar barriers for reaction. The influence of tunneling in this reaction is determined by the small curvature tunneling approach on the electronic surfaces.
构建了不同尺寸的各种钌簇,目的是以足够的精度模拟Ru(0001)表面,以便通过杂化密度泛函方法(B3LYP)预测催化作用。作为一个示例反应,选择了氨催化生产循环中的氢化步骤N(ads)+H(ads)→NH(ads)。发现由12个钌原子组成的簇能够令人满意地重现表面上各种反应物的实验几何结构和频率。为了使吸附氢的几何结构在定性上正确,结果表明必须在模型簇中包含第二层原子。边界效应被认为对优化几何结构的影响较小,而对反应势垒的影响则很大。将模型簇计算与采用平面波和密度泛函方法(RPBE)的周期性超胞方法进行比较,结果显示反应势垒相似。该反应中隧穿的影响通过电子表面的小曲率隧穿方法来确定。