Suppr超能文献

国际热核聚变实验堆(ITER)背景下的等离子体-表面相互作用

Plasma-surface interaction in the context of ITER.

作者信息

Kleyn A W, Lopes Cardozo N J, Samm U

机构信息

FOM-Institute for Plasma Physics Rijnhuizen, Association Euratom-FOM, Trilateral Euregio Cluster, Nieuwegein, The Netherlands.

出版信息

Phys Chem Chem Phys. 2006 Apr 21;8(15):1761-74. doi: 10.1039/b514367e. Epub 2006 Mar 6.

Abstract

The decreasing availability of energy and concern about climate change necessitate the development of novel sustainable energy sources. Fusion energy is such a source. Although it will take several decades to develop it into routinely operated power sources, the ultimate potential of fusion energy is very high and badly needed. A major step forward in the development of fusion energy is the decision to construct the experimental test reactor ITER. ITER will stimulate research in many areas of science. This article serves as an introduction to some of those areas. In particular, we discuss research opportunities in the context of plasma-surface interactions. The fusion plasma, with a typical temperature of 10 keV, has to be brought into contact with a physical wall in order to remove the helium produced and drain the excess energy in the fusion plasma. The fusion plasma is far too hot to be brought into direct contact with a physical wall. It would degrade the wall and the debris from the wall would extinguish the plasma. Therefore, schemes are developed to cool down the plasma locally before it impacts on a physical surface. The resulting plasma-surface interaction in ITER is facing several challenges including surface erosion, material redeposition and tritium retention. In this article we introduce how the plasma-surface interaction relevant for ITER can be studied in small scale experiments. The various requirements for such experiments are introduced and examples of present and future experiments will be given. The emphasis in this article will be on the experimental studies of plasma-surface interactions.

摘要

能源供应的减少以及对气候变化的担忧使得开发新型可持续能源成为必要。聚变能源就是这样一种能源。尽管将其发展成常规运行的能源需要几十年时间,但聚变能源的最终潜力非常高且急需。聚变能源发展的一个重大进展是决定建造国际热核聚变实验堆(ITER)。ITER将刺激许多科学领域的研究。本文旨在介绍其中一些领域。特别是,我们将在等离子体与表面相互作用的背景下讨论研究机会。典型温度为10千电子伏的聚变等离子体必须与物理壁接触,以便去除产生的氦并排出聚变等离子体中的多余能量。聚变等离子体温度过高,无法与物理壁直接接触。这会使壁退化,壁上的碎片会熄灭等离子体。因此,人们制定了一些方案,以便在等离子体撞击物理表面之前对其进行局部冷却。ITER中由此产生的等离子体与表面相互作用面临着包括表面侵蚀、材料再沉积和氚滞留在内的若干挑战。在本文中,我们介绍了如何在小规模实验中研究与ITER相关的等离子体与表面相互作用。介绍了此类实验的各种要求,并给出了当前和未来实验的示例。本文的重点将是等离子体与表面相互作用的实验研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验