Suppr超能文献

创伤性脑损伤后小鼠海马CA1区长时程增强无法诱导的潜在机制。

Mechanisms underlying the inability to induce area CA1 LTP in the mouse after traumatic brain injury.

作者信息

Schwarzbach E, Bonislawski D P, Xiong G, Cohen A S

机构信息

Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.

出版信息

Hippocampus. 2006;16(6):541-50. doi: 10.1002/hipo.20183.

Abstract

Traumatic brain injury (TBI) is a significant health issue that often causes enduring cognitive deficits, in particular memory dysfunction. The hippocampus, a structure crucial in learning and memory, is frequently damaged during TBI. Since long-term potentiation (LTP) is the leading cellular model underlying learning and memory, this study was undertaken to examine how injury affects area CA1 LTP in mice using lateral fluid percussion injury (FPI). Brain slices derived from FPI animals demonstrated an inability to induce LTP in area CA1 7 days postinjury. However, area CA1 long-term depression could be induced in neurons 7 days postinjury, demonstrating that some forms of synaptic plasticity can still be elicited. Using a multi-disciplined approach, potential mechanisms underlying the inability to induce and maintain area CA1 LTP were investigated. This study demonstrates that injury leads to significantly smaller N-methyl-D-aspartate potentials and glutamate-induced excitatory currents, increased dendritic spine size, and decreased expression of alpha-calcium calmodulin kinase II. These findings may underlie the injury-induced lack of LTP and thus, contribute to cognitive impairments often associated with TBI. Furthermore, these results provide attractive sites for potential therapeutic intervention directed toward alleviating the devastating consequences of human TBI.

摘要

创伤性脑损伤(TBI)是一个重大的健康问题,常常导致持久的认知缺陷,尤其是记忆功能障碍。海马体是学习和记忆中至关重要的结构,在TBI期间经常受损。由于长时程增强(LTP)是学习和记忆的主要细胞模型,本研究旨在使用侧方流体冲击伤(FPI)来研究损伤如何影响小鼠海马体CA1区的LTP。来自FPI动物的脑片在损伤后7天显示出无法在CA1区诱导LTP。然而,损伤后7天可在神经元中诱导出CA1区长时程抑制,表明仍可引发某些形式的突触可塑性。使用多学科方法,研究了无法诱导和维持CA1区LTP的潜在机制。本研究表明,损伤导致N-甲基-D-天冬氨酸电位和谷氨酸诱导的兴奋性电流显著减小,树突棘尺寸增加,以及α-钙调蛋白依赖性蛋白激酶II的表达降低。这些发现可能是损伤诱导的LTP缺乏的基础,因此,导致了常常与TBI相关的认知障碍。此外,这些结果为旨在减轻人类TBI灾难性后果的潜在治疗干预提供了有吸引力的靶点。

相似文献

引用本文的文献

3
Non-invasive therapeutics for neurotrauma: a mechanistic overview.神经创伤的非侵入性治疗:机制概述。
Front Neurol. 2025 May 14;16:1560777. doi: 10.3389/fneur.2025.1560777. eCollection 2025.

本文引用的文献

4
Dendritic spines and long-term plasticity.树突棘与长期可塑性。
Nat Rev Neurosci. 2005 Apr;6(4):277-84. doi: 10.1038/nrn1649.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验