Suppr超能文献

暖温带森林中二氧化碳浓度升高条件下生态系统过程的渐进性氮限制

Progressive nitrogen limitation of ecosystem processes under elevated CO2 in a warm-temperate forest.

作者信息

Finzi Adrien C, Moore David J P, DeLucia Evan H, Lichter John, Hofmockel Kirsten S, Jackson Robert B, Kim Hyun-Seok, Matamala Roser, McCarthy Heather R, Oren Ram, Pippen Jeffrey S, Schlesinger William H

机构信息

Department of Biology, Boston University, Massachusetts 02215, USA.

出版信息

Ecology. 2006 Jan;87(1):15-25. doi: 10.1890/04-1748.

Abstract

A hypothesis for progressive nitrogen limitation (PNL) proposes that net primary production (NPP) will decline through time in ecosystems subjected to a step-function increase in atmospheric CO2. The primary mechanism driving this response is a rapid rate of N immobilization by plants and microbes under elevated CO2 that depletes soils of N, causing slower rates of N mineralization. Under this hypothesis, there is little long-term stimulation of NPP by elevated CO2 in the absence of exogenous inputs of N. We tested this hypothesis using data on the pools and fluxes of C and N in tree biomass, microbes, and soils from 1997 through 2002 collected at the Duke Forest free-air CO2 enrichment (FACE) experiment. Elevated CO2 stimulated NPP by 18-24% during the first six years of this experiment. Consistent with the hypothesis for PNL, significantly more N was immobilized in tree biomass and in the O horizon under elevated CO2. In contrast to the PNL hypothesis, microbial-N immobilization did not increase under elevated CO2, and although the rate of net N mineralization declined through time, the decline was not significantly more rapid under elevated CO2. Ecosystem C-to-N ratios widened more rapidly under elevated CO2 than ambient CO2 indicating a more rapid rate of C fixation per unit of N, a processes that could delay PNL in this ecosystem. Mass balance calculations demonstrated a large accrual of ecosystem N capital. Is PNL occurring in this ecosystem and will NPP decline to levels under ambient CO2? The answer depends on the relative strength of tree biomass and O-horizon N immobilization vs. widening C-to-N ratios and ecosystem-N accrual as processes that drive and delay PNL, respectively. Only direct observations through time will definitively answer this question.

摘要

一种关于渐进性氮限制(PNL)的假说提出,在大气CO₂呈阶跃函数增加的生态系统中,净初级生产力(NPP)将随时间下降。驱动这种响应的主要机制是在CO₂浓度升高的情况下,植物和微生物对氮的固定速度很快,这会耗尽土壤中的氮,导致氮矿化速度变慢。根据这一假说,在没有外源氮输入的情况下,CO₂浓度升高对NPP几乎没有长期刺激作用。我们利用1997年至2002年在杜克森林自由空气CO₂富集(FACE)实验中收集的树木生物量、微生物和土壤中碳和氮的储量及通量数据对这一假说进行了检验。在该实验的前六年中,CO₂浓度升高使NPP提高了18% - 24%。与PNL假说一致的是,在CO₂浓度升高的情况下,树木生物量和O层中固定的氮显著增加。与PNL假说相反的是,在CO₂浓度升高的情况下,微生物氮固定并未增加,而且尽管净氮矿化速率随时间下降,但在CO₂浓度升高的情况下,下降速度并没有明显加快。在CO₂浓度升高的情况下,生态系统碳氮比的拓宽速度比环境CO₂浓度下更快,这表明单位氮的碳固定速度更快,这一过程可能会延缓该生态系统中的PNL。质量平衡计算表明生态系统氮资本有大量积累。这个生态系统中是否正在发生PNL,NPP是否会下降到环境CO₂浓度下的水平?答案取决于树木生物量和O层氮固定与碳氮比拓宽及生态系统氮积累的相对强度,它们分别是驱动和延缓PNL的过程。只有通过长期的直接观测才能明确回答这个问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验