Suppr超能文献

灌丛橡木林地大气二氧化碳浓度升高七年间的氮循环

Nitrogen cycling during seven years of atmospheric CO2 enrichment in a scrub oak woodland.

作者信息

Hungate Bruce A, Johnson Dale W, Dijkstra Paul, Hymus Graham, Stiling Peter, Megonigal J Patrick, Pagel Alisha L, Moan Jaina L, Day Frank, Li Jiahong, Hinkle C Ross, Drake Bert G

机构信息

Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff 86011, USA.

出版信息

Ecology. 2006 Jan;87(1):26-40. doi: 10.1890/04-1732.

Abstract

Experimentally increasing atmospheric CO2 often stimulates plant growth and ecosystem carbon (C) uptake. Biogeochemical theory predicts that these initial responses will immobilize nitrogen (N) in plant biomass and soil organic matter, causing N availability to plants to decline, and reducing the long-term CO2-stimulation of C storage in N limited ecosystems. While many experiments have examined changes in N cycling in response to elevated CO2, empirical tests of this theoretical prediction are scarce. During seven years of postfire recovery in a scrub oak ecosystem, elevated CO2 initially increased plant N accumulation and plant uptake of tracer 15N, peaking after four years of CO2 enrichment. Between years four and seven, these responses to CO2 declined. Elevated CO2 also increased N and tracer 15N accumulation in the O horizon, and reduced 15N recovery in underlying mineral soil. These responses are consistent with progressive N limitation: the initial CO2 stimulation of plant growth immobilized N in plant biomass and in the O horizon, progressively reducing N availability to plants. Litterfall production (one measure of aboveground primary productivity) increased initially in response to elevated CO2, but the CO2 stimulation declined during years five through seven, concurrent with the accumulation of N in the O horizon and the apparent restriction of plant N availability. Yet, at the level of aboveground plant biomass (estimated by allometry), progressive N limitation was less apparent, initially because of increased N acquisition from soil and later because of reduced N concentration in biomass as N availability declined. Over this seven-year period, elevated CO2 caused a redistribution of N within the ecosystem, from mineral soils, to plants, to surface organic matter. In N limited ecosystems, such changes in N cycling are likely to reduce the response of plant production to elevated CO2.

摘要

通过实验增加大气中的二氧化碳浓度通常会刺激植物生长和生态系统碳(C)吸收。生物地球化学理论预测,这些初始反应会使氮(N)固定在植物生物量和土壤有机质中,导致植物可利用的氮含量下降,并减少氮限制生态系统中二氧化碳对碳储存的长期刺激作用。虽然许多实验研究了氮循环对二氧化碳浓度升高的响应,但对这一理论预测的实证检验却很少。在一个灌丛橡木生态系统火灾后的七年恢复过程中,二氧化碳浓度升高最初增加了植物氮的积累和植物对示踪剂15N的吸收,在二氧化碳富集四年后达到峰值。在第四年到第七年之间,这些对二氧化碳的反应有所下降。二氧化碳浓度升高还增加了O层中氮和示踪剂15N的积累,并降低了下层矿质土壤中15N的回收率。这些反应与渐进性氮限制一致:二氧化碳对植物生长的初始刺激使氮固定在植物生物量和O层中,逐渐减少了植物可利用的氮。凋落物产量(地上初级生产力的一种衡量指标)最初因二氧化碳浓度升高而增加,但在第五年到第七年期间,二氧化碳刺激作用下降,同时O层中氮的积累以及植物氮可利用性的明显受限。然而,在地上植物生物量水平(通过异速生长法估算)上,渐进性氮限制不太明显,最初是因为从土壤中获取的氮增加,后来是因为随着氮可利用性下降生物量中氮浓度降低。在这七年期间,二氧化碳浓度升高导致生态系统内氮的重新分配,从矿质土壤到植物,再到地表有机质。在氮限制的生态系统中,这种氮循环的变化可能会降低植物生产对二氧化碳浓度升高的响应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验