Collin Olivier, Tracqui Philippe, Stephanou Angélique, Usson Yves, Clément-Lacroix Jocelyne, Planus Emmanuelle
Equipe DynaCell, Laboratoire TIMC-IMAG, CNRS UMR5525, Institut de l'Ingénierie et de l'Information de Santé-Faculté de Médecine, 38706 La Tronche CEDEX, France.
J Cell Sci. 2006 May 1;119(Pt 9):1914-25. doi: 10.1242/jcs.02838.
In this study we analyse the formation and dynamics of specific actin-rich structures called podosomes. Podosomes are very dynamic punctual adhesion sites tightly linked to the actin cytoskeleton. Mechanical properties of substrates are emerging as important physical modulators of anchorage-dependent processes involved in the cellular response. We investigate the influence of substrate flexibility on the dynamic properties of podosomes. We used mouse NIH-3T3 fibroblasts, transfected with GFP-actin and cultured on polyacrylamide collagen-coated substrates of varying stiffness. Static and dynamic features of cell morphologies associated with an optical flow analysis of the dynamics of podosomes revealed that: (1) they have constant structural properties, i.e. their shape factor and width do not change with the substrate flexibility; (2) the lifespan of podosomes and mean minimum distance between them depend on the substrate flexibility; (3) there is a variation in the displacement speed of the rosette of podosomes. Moreover, the rosettes sometimes appear as periodically emergent F-actin structures, which suggests that a two-level self-organisation process may drive first, the formation of clusters of podosomes and second, the organisation of these clusters into oscillating rings. Such dynamic features give new perspectives regarding the potential function of podosomes as mechanosensory structures.
在本研究中,我们分析了一种名为足体的特定富含肌动蛋白结构的形成和动态变化。足体是与肌动蛋白细胞骨架紧密相连的非常动态的点状粘附位点。底物的力学性质正逐渐成为参与细胞反应的锚定依赖性过程的重要物理调节因子。我们研究了底物柔韧性对足体动态特性的影响。我们使用了转染了绿色荧光蛋白标记肌动蛋白(GFP-actin)并培养在不同刚度的聚丙烯酰胺胶原包被底物上的小鼠NIH-3T3成纤维细胞。与足体动态的光流分析相关的细胞形态的静态和动态特征表明:(1)它们具有恒定的结构特性,即其形状因子和宽度不会随底物柔韧性而改变;(2)足体的寿命及其之间的平均最小距离取决于底物柔韧性;(3)足体玫瑰花结的位移速度存在变化。此外,玫瑰花结有时会表现为周期性出现的F-肌动蛋白结构,这表明一个两级自组织过程可能首先驱动足体簇的形成,其次驱动这些簇组织成振荡环。这些动态特征为足体作为机械传感结构的潜在功能提供了新的视角。