Goodreau Steven M
Department of Anthropology, University of Washington, Seattle, Washington 98195, USA.
Genetics. 2006 Apr;172(4):2033-45. doi: 10.1534/genetics.103.024612.
Geneticists seeking to understand HIV-1 evolution among human hosts generally assume that hosts represent a panmictic population. Social science research demonstrates that the network patterns over which HIV-1 spreads are highly nonrandom, but the effect of these patterns on the genetic diversity of HIV-1 and other sexually transmitted pathogens has yet to be thoroughly examined. In addition, interhost phylogenetic models rarely account explicitly for genetic diversity arising from intrahost dynamics. This study outlines a graph-theoretic framework (exponential random graph modeling, ERGM) for the estimation, inference, and simulation of dynamic partnership networks. This approach is used to simulate HIV-1 transmission and evolution under eight mixing patterns resembling those observed in empirical human populations, while simultaneously incorporating intrahost viral diversity. Models of parametric growth fit panmictic populations well, yielding estimates of total viral effective population on the order of the product of infected host size and intrahost effective viral population size. Populations exhibiting patterns of nonrandom mixing differ more widely in estimates of effective population size they yield, however, and reconstructions of population dynamics can exhibit severe errors if panmixis is assumed. I discuss implications for HIV-1 phylogenetics and the potential for ERGM to provide a general framework for addressing these issues.
试图了解人类宿主中HIV-1进化情况的遗传学家通常假定宿主代表一个随机交配群体。社会科学研究表明,HIV-1传播所基于的网络模式具有高度的非随机性,但这些模式对HIV-1及其他性传播病原体遗传多样性的影响尚未得到充分研究。此外,宿主间系统发育模型很少明确考虑宿主内动态变化所产生的遗传多样性。本研究概述了一种用于动态伙伴关系网络估计、推断和模拟的图论框架(指数随机图建模,ERGM)。该方法用于在八种类似于在实际人类群体中观察到的混合模式下模拟HIV-1传播和进化,同时纳入宿主内病毒多样性。参数增长模型很好地拟合了随机交配群体,得出的总病毒有效群体估计值约为感染宿主规模与宿主内有效病毒群体规模的乘积。然而,表现出非随机混合模式的群体在其产生的有效群体规模估计值上差异更大,并且如果假定为随机交配,群体动态的重建可能会出现严重误差。我讨论了对HIV-1系统发育学的影响以及ERGM为解决这些问题提供通用框架的潜力。