Deng Han-Xiang, Shi Yong, Furukawa Yoshiaki, Zhai Hong, Fu Ronggen, Liu Erdong, Gorrie George H, Khan Mohammad S, Hung Wu-Yen, Bigio Eileen H, Lukas Thomas, Dal Canto Mauro C, O'Halloran Thomas V, Siddique Teepu
Davee Department of Neurology and Clinical Neurosciences, Northwestern University Feinberg School of Medicine, Tarry Building, Room 13-715, 303 East Chicago Avenue, Chicago, IL 60611, USA.
Proc Natl Acad Sci U S A. 2006 May 2;103(18):7142-7. doi: 10.1073/pnas.0602046103. Epub 2006 Apr 24.
Twenty percent of the familial form of amyotrophic lateral sclerosis (ALS) is caused by mutations in the Cu, Zn-superoxide dismutase gene (SOD1) through the gain of a toxic function. The nature of this toxic function of mutant SOD1 has remained largely unknown. Here we show that WT SOD1 not only hastens onset of the ALS phenotype but can also convert an unaffected phenotype to an ALS phenotype in mutant SOD1 transgenic mouse models. Further analyses of the single- and double-transgenic mice revealed that conversion of mutant SOD1 from a soluble form to an aggregated and detergent-insoluble form was associated with development of the ALS phenotype in transgenic mice. Conversion of WT SOD1 from a soluble form to an aggregated and insoluble form also correlates with exacerbation of the disease or conversion to a disease phenotype in double-transgenic mice. This conversion, observed in the mitochondrial fraction of the spinal cord, involved formation of insoluble SOD1 dimers and multimers that are crosslinked through intermolecular disulfide bonds via oxidation of cysteine residues in SOD1. Our data thus show a molecular mechanism by which SOD1, an important protein in cellular defense against free radicals, is converted to aggregated and apparently ALS-associated toxic dimers and multimers by redox processes. These findings provide evidence of direct links among oxidation, protein aggregation, mitochondrial damage, and SOD1-mediated ALS, with possible applications to the aging process and other late-onset neurodegenerative disorders. Importantly, rational therapy based on these observations can now be developed and tested.
20%的家族性肌萎缩侧索硬化症(ALS)是由铜锌超氧化物歧化酶基因(SOD1)突变导致毒性功能获得引起的。突变型SOD1这种毒性功能的本质在很大程度上仍不清楚。在此我们表明,野生型SOD1不仅会加速ALS表型的出现,还能在突变型SOD1转基因小鼠模型中将未受影响的表型转变为ALS表型。对单转基因和双转基因小鼠的进一步分析表明,突变型SOD1从可溶形式转变为聚集且不溶于去污剂的形式与转基因小鼠中ALS表型的发展相关。野生型SOD1从可溶形式转变为聚集且不溶的形式也与双转基因小鼠中疾病的加重或转变为疾病表型相关。这种转变在脊髓的线粒体部分观察到,涉及不溶性SOD1二聚体和多聚体的形成,这些二聚体和多聚体通过SOD1中半胱氨酸残基的氧化经由分子间二硫键交联。因此我们的数据显示了一种分子机制,通过该机制,细胞防御自由基的重要蛋白质SOD1通过氧化还原过程转变为聚集且明显与ALS相关的有毒二聚体和多聚体。这些发现提供了氧化、蛋白质聚集、线粒体损伤和SOD1介导的ALS之间直接联系的证据,可能适用于衰老过程和其他迟发性神经退行性疾病。重要的是,现在可以基于这些观察结果开发和测试合理的治疗方法。