文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

纳米酶拓展生物催化的边界。

Nanozymes expanding the boundaries of biocatalysis.

作者信息

Zhang Ruofei, Yan Xiyun, Gao Lizeng, Fan Kelong

机构信息

State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.

Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China.

出版信息

Nat Commun. 2025 Jul 24;16(1):6817. doi: 10.1038/s41467-025-62063-8.


DOI:10.1038/s41467-025-62063-8
PMID:40707464
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12290111/
Abstract

Biocatalysis is fundamental to biological processes and sustainable applications. Over time, the understanding of biocatalysis has evolved considerably. Initially, protein enzymes were recognized as the primary biocatalysts due to their high catalytic efficiency under mild conditions. The discovery of ribozymes expanded the scope of biocatalysts to include nucleic acids and the development of synthetic or semisynthetic artificial enzymes sought to overcome the limitations of natural enzymes. The emergence of nanozymes, nanomaterials with intrinsic biocatalytic activity, has further broadened this field. Nanozymes possess abundant active sites, multiple active phases, and nanostructures that maintain stability even under extreme conditions, along with unique physicochemical properties. These attributes enable nanozymes to perform efficient biocatalysis in diverse forms and under a wide range of conditions. The discovery of natural biogenic nanozymes, such as magnetosomes, ferritin iron cores, and amyloid protein assemblies, underscores their potential physiological functions and roles in disease pathogenesis. This review explores the distinct properties and catalytic mechanisms of nanozymes, elucidates their structure-activity relationships, and discusses their transformative impact on biocatalysis, highlighting their potential to reshape fundamental concepts and practical applications in the field.

摘要

生物催化是生物过程和可持续应用的基础。随着时间的推移,人们对生物催化的理解有了很大的发展。最初,蛋白质酶因其在温和条件下的高催化效率而被认为是主要的生物催化剂。核酶的发现将生物催化剂的范围扩大到包括核酸,而合成或半合成人工酶的发展旨在克服天然酶的局限性。纳米酶(具有内在生物催化活性的纳米材料)的出现进一步拓宽了这一领域。纳米酶具有丰富的活性位点、多个活性相和即使在极端条件下也能保持稳定的纳米结构,以及独特的物理化学性质。这些特性使纳米酶能够在多种形式和广泛条件下进行高效的生物催化。天然生物源纳米酶(如磁小体、铁蛋白铁芯和淀粉样蛋白聚集体)的发现强调了它们在疾病发病机制中的潜在生理功能和作用。本综述探讨了纳米酶的独特性质和催化机制,阐明了它们的构效关系,并讨论了它们对生物催化的变革性影响,突出了它们重塑该领域基本概念和实际应用的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7b0/12290111/0c00b8e12626/41467_2025_62063_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7b0/12290111/6e5c2cf537cc/41467_2025_62063_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7b0/12290111/8c7ed01b3b3d/41467_2025_62063_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7b0/12290111/ff3ffc20dbb9/41467_2025_62063_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7b0/12290111/2cdc4e23bb48/41467_2025_62063_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7b0/12290111/2f3067df9587/41467_2025_62063_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7b0/12290111/29eb8d23d890/41467_2025_62063_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7b0/12290111/0c00b8e12626/41467_2025_62063_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7b0/12290111/6e5c2cf537cc/41467_2025_62063_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7b0/12290111/8c7ed01b3b3d/41467_2025_62063_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7b0/12290111/ff3ffc20dbb9/41467_2025_62063_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7b0/12290111/2cdc4e23bb48/41467_2025_62063_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7b0/12290111/2f3067df9587/41467_2025_62063_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7b0/12290111/29eb8d23d890/41467_2025_62063_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7b0/12290111/0c00b8e12626/41467_2025_62063_Fig7_HTML.jpg

相似文献

[1]
Nanozymes expanding the boundaries of biocatalysis.

Nat Commun. 2025-7-24

[2]
Biodegradable enzyme-mimicking nanocatalysts: From degradation behavior to theranostic applications.

Acta Biomater. 2025-8

[3]
Integrating biocatalysis with continuous flow: current status, challenges, and future perspectives.

J Adv Res. 2025-7-8

[4]
Emerging Paradigms in Nanozyme: Strategies in Fabrication, Cancer Targeting, and Biosensing.

ACS Appl Bio Mater. 2025-7-21

[5]
Management of urinary stones by experts in stone disease (ESD 2025).

Arch Ital Urol Androl. 2025-6-30

[6]
Sexual Harassment and Prevention Training

2025-1

[7]
Genetically modified lipases as biocatalysts for diacylglycerol production in the food industry: a critical review.

Arch Microbiol. 2025-6-4

[8]
Multifunctional nanozymes based on MoS₂ for synergistic catalytic activity and cancer photothermal therapy.

Nanomedicine (Lond). 2025-7

[9]
Nanozymes for biomedical applications: Multi-metallic systems may improve activity but at the cost of higher toxicity?

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2024

[10]
Iron oxide nanozymes as versatile analytical tools: an overview of their application as detection technique.

Bioanalysis. 2024

本文引用的文献

[1]
Nanozymes and Their Potential Roles in the Origin of Life.

Adv Mater. 2025-2

[2]
Kinetic Profiling of Oxidoreductase-Mimicking Nanozymes: Impact of Multiple Activities, Chemical Transformations, and Colloidal Stability.

ACS Nano. 2024-12-24

[3]
Peptide nanozymes: An emerging direction for functional enzyme mimics.

Bioact Mater. 2024-9-4

[4]
Approach of a small protein to the biomimetic bis-(μ-oxo) dicopper active-site installed in MOF-808 pores with restricted access perturbs substrate selectivity of oxidase nanozyme.

Chem Sci. 2024-6-10

[5]
Elucidating the catalytic mechanism of Prussian blue nanozymes with self-increasing catalytic activity.

Nat Commun. 2024-7-13

[6]
Regulating Reactive Oxygen Intermediates of Fe-N-C SAzyme via Second-Shell Coordination for Selective Aerobic Oxidation Reactions.

Angew Chem Int Ed Engl. 2024-9-2

[7]
Nanozybiotics: Advancing Antimicrobial Strategies Through Biomimetic Mechanisms.

Adv Mater. 2024-8

[8]
Single-site iron-anchored amyloid hydrogels as catalytic platforms for alcohol detoxification.

Nat Nanotechnol. 2024-8

[9]
Machine Learning-Accelerated High-Throughput Computational Screening: Unveiling Bimetallic Nanoparticles with Peroxidase-Like Activity.

ACS Nano. 2024-5-14

[10]
Breaking the pH Limitation of Nanozymes: Mechanisms, Methods, and Applications.

Adv Mater. 2024-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索