Suppr超能文献

高场磁共振弹性成像技术:11T下的设备设置与组织体模成像

High field MREIT: setup and tissue phantom imaging at 11 T.

作者信息

Sadleir Rosalind, Grant Samuel, Zhang Sung Uk, Oh Suk Hoon, Lee Byung Il, Woo Eung Je

机构信息

Department of Biomedical Engineering, University of Florida, USA.

出版信息

Physiol Meas. 2006 May;27(5):S261-70. doi: 10.1088/0967-3334/27/5/S22. Epub 2006 Apr 24.

Abstract

Magnetic resonance electrical impedance tomography (MREIT) has the potential to provide conductivity and current density images with high spatial resolution and accuracy. Recent experimental studies at a field strength of 3 T showed that the spatial resolution of conductivity and current density images may be similar to that of conventional MR images as long as enough current is injected, at least 20 mA when the object being imaged has a size similar to the human head. To apply the MREIT technique to image small conductivity changes using less injection current, we performed MREIT studies at 11 T field strength, where noise levels in measured magnetic flux density data are significantly lower. In this paper we present the experimental results of imaging biological tissues with different conductivity values using MREIT at 11 T. We describe technical difficulties encountered in using high-field MREIT systems and possible solutions. High-field MREIT is suggested as a research tool for obtaining accurate conductivity data from tissue samples and animal subjects.

摘要

磁共振电阻抗断层成像(MREIT)有潜力提供具有高空间分辨率和准确性的电导率和电流密度图像。最近在3T场强下进行的实验研究表明,只要注入足够的电流,电导率和电流密度图像的空间分辨率可能与传统磁共振图像相似,当被成像物体的尺寸与人头相似时,至少需要20mA。为了应用MREIT技术以较少的注入电流对小的电导率变化进行成像,我们在11T场强下进行了MREIT研究,在该场强下测量的磁通密度数据中的噪声水平显著更低。在本文中,我们展示了在11T场强下使用MREIT对具有不同电导率值的生物组织进行成像的实验结果。我们描述了使用高场MREIT系统时遇到的技术难题及可能的解决方案。高场MREIT被认为是一种从组织样本和动物受试者获取准确电导率数据的研究工具。

相似文献

1
High field MREIT: setup and tissue phantom imaging at 11 T.
Physiol Meas. 2006 May;27(5):S261-70. doi: 10.1088/0967-3334/27/5/S22. Epub 2006 Apr 24.
2
Phase artefact reduction in magnetic resonance electrical impedance tomography (MREIT).
Phys Med Biol. 2006 Oct 21;51(20):5277-88. doi: 10.1088/0031-9155/51/20/013. Epub 2006 Oct 2.
3
Harmonic decomposition in PDE-based denoising technique for magnetic resonance electrical impedance tomography.
IEEE Trans Biomed Eng. 2005 Nov;52(11):1912-20. doi: 10.1109/TBME.2005.856258.
4
Electrical conductivity images of biological tissue phantoms in MREIT.
Physiol Meas. 2005 Apr;26(2):S279-88. doi: 10.1088/0967-3334/26/2/026. Epub 2005 Mar 29.
5
Image reconstruction of anisotropic conductivity tensor distribution in MREIT: computer simulation study.
Phys Med Biol. 2004 Sep 21;49(18):4371-82. doi: 10.1088/0031-9155/49/18/012.
7
Conductivity image reconstruction from defective data in MREIT: numerical simulation and animal experiment.
IEEE Trans Med Imaging. 2006 Feb;25(2):168-76. doi: 10.1109/TMI.2005.862150.
9
Magnetic resonance electrical impedance tomography (MREIT) for high-resolution conductivity imaging.
Physiol Meas. 2008 Oct;29(10):R1-26. doi: 10.1088/0967-3334/29/10/R01. Epub 2008 Sep 17.
10
Noise analysis and MR pulse sequence optimization in MREIT using an injected current nonlinear encoding (ICNE) method.
Physiol Meas. 2007 Nov;28(11):1391-404. doi: 10.1088/0967-3334/28/11/006. Epub 2007 Oct 12.

引用本文的文献

1
Accelerating acquisition strategies for low-frequency conductivity imaging using MREIT.
Phys Med Biol. 2018 Feb 13;63(4):045011. doi: 10.1088/1361-6560/aaa8d2.
2
MREIT experiments with 200 µA injected currents: a feasibility study using two reconstruction algorithms, SMM and harmonic B(Z).
Phys Med Biol. 2012 Jul 7;57(13):4245-61. doi: 10.1088/0031-9155/57/13/4245. Epub 2012 Jun 8.
3
Can high-field MREIT be used to directly detect neural activity? Theoretical considerations.
Neuroimage. 2010 Aug 1;52(1):205-16. doi: 10.1016/j.neuroimage.2010.04.005. Epub 2010 Apr 9.
4
Noninvasive imaging of head-brain conductivity profiles.
IEEE Eng Med Biol Mag. 2008 Sep-Oct;27(5):78-83. doi: 10.1109/MEMB.2008.923953.

本文引用的文献

1
Measurement of nonuniform current density by magnetic resonance.
IEEE Trans Med Imaging. 1991;10(3):362-74. doi: 10.1109/42.97586.
2
MR current density and conductivity imaging: the state of the art.
Conf Proc IEEE Eng Med Biol Soc. 2004;2004:5315-9. doi: 10.1109/IEMBS.2004.1404484.
3
Harmonic decomposition in PDE-based denoising technique for magnetic resonance electrical impedance tomography.
IEEE Trans Biomed Eng. 2005 Nov;52(11):1912-20. doi: 10.1109/TBME.2005.856258.
4
Noise analysis in magnetic resonance electrical impedance tomography at 3 and 11 T field strengths.
Physiol Meas. 2005 Oct;26(5):875-84. doi: 10.1088/0967-3334/26/5/023. Epub 2005 Aug 8.
5
Estimation of electrical conductivity distribution within the human head from magnetic flux density measurement.
Phys Med Biol. 2005 Jun 7;50(11):2675-87. doi: 10.1088/0031-9155/50/11/016. Epub 2005 May 18.
6
Electrical conductivity images of biological tissue phantoms in MREIT.
Physiol Meas. 2005 Apr;26(2):S279-88. doi: 10.1088/0967-3334/26/2/026. Epub 2005 Mar 29.
7
Image reconstruction of anisotropic conductivity tensor distribution in MREIT: computer simulation study.
Phys Med Biol. 2004 Sep 21;49(18):4371-82. doi: 10.1088/0031-9155/49/18/012.
8
Magnetic resonance electrical impedance tomography at 3 Tesla field strength.
Magn Reson Med. 2004 Jun;51(6):1292-6. doi: 10.1002/mrm.20091.
9
Observation of significant signal voids in images of large biological samples at 11.1 T.
Magn Reson Med. 2004 Jun;51(6):1103-7. doi: 10.1002/mrm.20120.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验