Suppr超能文献

磁共振电阻抗断层成像(MREIT)中的J-替代算法:静态电阻率图像的体模实验

J-substitution algorithm in magnetic resonance electrical impedance tomography (MREIT): phantom experiments for static resistivity images.

作者信息

Khang Hyun Soo, Lee Byung Il, Oh Suk Hoon, Woo Eung Je, Lee Soo Yeol, Cho Min Hyoung, Kwon Ohin, Yoon Jeong Rock, Seo Jin Keun

机构信息

Graduate School of East-West Medical Sciences, Kyung Hee University, Kyungki, S. Korea.

出版信息

IEEE Trans Med Imaging. 2002 Jun;21(6):695-702. doi: 10.1109/TMI.2002.800604.

Abstract

Recently, a new static resistivity image reconstruction algorithm is proposed utilizing internal current density data obtained by magnetic resonance current density imaging technique. This new imaging method is called magnetic resonance electrical impedance tomography (MREIT). The derivation and performance of J-substitution algorithm in MREIT have been reported as a new accurate and high-resolution static impedance imaging technique via computer simulation methods. In this paper, we present experimental procedures, denoising techniques, and image reconstructions using a 0.3-tesla (T) experimental MREIT system and saline phantoms. MREIT using J-substitution algorithm effectively utilizes the internal current density information resolving the problem inherent in a conventional EIT, that is, the low sensitivity of boundary measurements to any changes of internal tissue resistivity values. Resistivity images of saline phantoms show an accuracy of 6.8%-47.2% and spatial resolution of 64 x 64. Both of them can be significantly improved by using an MRI system with a better signal-to-noise ratio.

摘要

最近,利用磁共振电流密度成像技术获得的内部电流密度数据,提出了一种新的静态电阻率图像重建算法。这种新的成像方法被称为磁共振电阻抗断层成像(MREIT)。通过计算机模拟方法,MREIT中J替代算法的推导和性能已被报道为一种新的精确且高分辨率的静态阻抗成像技术。在本文中,我们展示了使用0.3特斯拉(T)实验性MREIT系统和盐水体模的实验过程、去噪技术以及图像重建。使用J替代算法的MREIT有效利用了内部电流密度信息,解决了传统电阻抗断层成像(EIT)中固有的问题,即边界测量对内部组织电阻率值的任何变化的低灵敏度。盐水体模的电阻率图像显示出6.8% - 47.2%的精度和64×64的空间分辨率。通过使用具有更好信噪比的MRI系统,这两者都可以得到显著提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验