Lomask Morton
Buxco Research Systems, Wilmington, North Carolina, USA.
Exp Toxicol Pathol. 2006 Jun;57 Suppl 2:13-20. doi: 10.1016/j.etp.2006.02.014. Epub 2006 Apr 25.
Unrestrained plethysmography (UP) has been widely used to measure airway reactivity in conscious mice. It is non-invasive, easy to use, suitable for longitudinal studies, and allows a large throughput of animals for screening purposes. A non-dimensional parameter based on a characteristic change in the expiratory waveshape of the UP box signal, Penh, has been used as an indicator of bronchconstriction. Hamelmann et al. [Non-invasive measurement of airway responsiveness in allergen mice using barometric plethysmography. Am J Respir Crit Care Med 1997;156:766-77] presented experimental data showing a correlation between Penh and intrapleural pressure, as well as lung resistance; and Dohi et al. [Non-invasive system for evaluating the allergen-specific airway response in a murine model of asthma. Lab Invest 1999;79:1559-71] showed that Penh tracked the bronchial response to allergen challenge. More recently, papers and letters to the editor have argued against the use of UP and Penh in resistance applications, presenting mathematical and theoretical arguments that the UP waveform, and parameters derived from it (Penh) are dominated by conditioning, and are essentially unrelated to resistance [Lundblad et al. A reevaluation of the validity of UP in mice. J Appl Physiol 2002;93:1198-207; Mitzner and Tankersley. Interpreting Penh in mice. J Appl Physiol 2003;94:828-32]. This paper discusses the mathematics of UP as applied to two types of whole body plethysmographs (WBPs): a sealed chamber (pressure plethysmograph, PWBP); and a chamber with a pneumotachograph in its wall (flow plethysmograph, FWBP). We show that the PWBP waveform is largely dominated by conditioning, and exhibits little effect due to resistance; thus supporting the claim that UP and Penh are unrelated to resistance, when applied to measurements at typical room temperatures. By contrast, the effects of resistance or specific airway resistance (sRaw) are evident in the FWBP waveform, even at room temperature. Penh is derived from the FWBP waveform. We show that the changes in the FWBP waveform which occur in response to methacholine challenge cannot be due to conditioning, and are not simply due to changes in respiratory timing. Finally, we describe how Penh quantifies those changes.
无限制体积描记法(UP)已被广泛用于测量清醒小鼠的气道反应性。它是非侵入性的,易于使用,适用于纵向研究,并且能够大量处理动物以用于筛选目的。基于UP箱信号呼气波形特征变化的无量纲参数Penh已被用作支气管收缩的指标。哈梅尔曼等人[使用气压体积描记法对变应原致敏小鼠气道反应性进行非侵入性测量。《美国呼吸与危重症医学杂志》1997年;156:766 - 77]给出的实验数据表明Penh与胸膜腔内压以及肺阻力之间存在相关性;并且土肥等人[用于评估哮喘小鼠模型中变应原特异性气道反应的非侵入性系统。《实验医学杂志》1999年;79:1559 - 71]表明Penh可追踪支气管对变应原激发的反应。最近,一些论文及给编辑的信对在阻力应用中使用UP和Penh提出了反对意见,提出了数学和理论观点,即UP波形及其导出参数(Penh)受调节因素主导,并且本质上与阻力无关[伦德布拉德等人。对小鼠中UP有效性的重新评估。《应用生理学杂志》2002年;93:1198 - 207;米茨纳和坦克斯利。解读小鼠中的Penh。《应用生理学杂志》2003年;94:828 - 32]。本文讨论了应用于两种类型全身体积描记器(WBP)的UP数学原理:密封腔室(压力体积描记器,PWBP);以及壁上带有呼吸流速计的腔室(流量体积描记器,FWBP)。我们表明,PWBP波形在很大程度上受调节因素主导,并且由于阻力产生的影响很小;因此支持了这样的观点,即在典型室温下进行测量时,UP和Penh与阻力无关。相比之下,即使在室温下,阻力或比气道阻力(sRaw)的影响在FWBP波形中也很明显。Penh由FWBP波形导出。我们表明,对乙酰甲胆碱激发产生反应时FWBP波形的变化不可能是由于调节因素,也不仅仅是由于呼吸时间的变化。最后,我们描述了Penh如何量化这些变化。