Gao Zhan-Guo, Duong Heng T, Sonina Tatiana, Kim Soo-Kyung, Van Rompaey Philippe, Van Calenbergh Serge, Mamedova Liaman, Kim Hea Ok, Kim Myong Jung, Kim Ae Yil, Liang Bruce T, Jeong Lak Shin, Jacobson Kenneth A
Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
J Med Chem. 2006 May 4;49(9):2689-702. doi: 10.1021/jm050968b.
An alternative approach to overcome the inherent lack of specificity of conventional agonist therapy can be the reengineering of the GPCRs and their agonists. A reengineered receptor (neoceptor) could be selectively activated by a modified agonist, but not by the endogenous agonist. Assisted by rhodopsin-based molecular modeling, we pinpointed mutations of the A(3) adenosine receptor (AR) for selective affinity enhancement following complementary modifications of adenosine. Ribose modifications examined included, at 3': amino, aminomethyl, azido, guanidino, ureido; and at 5': uronamido, azidodeoxy. N(6)-Variations included 3-iodobenzyl, 5-chloro-2-methyloxybenzyl, and methyl. An N(6)-3-iodobenzyl-3'-ureido adenosine derivative 10 activated phospholipase C in COS-7 cells (EC(50) = 0.18 microM) or phospholipase D in chick primary cardiomyocytes, both mediated by a mutant (H272E), but not the wild-type, A(3)AR. The affinity enhancements for 10 and the corresponding 3'-acetamidomethyl analogue 6 were >100-fold and >20-fold, respectively. 10 concentration-dependently protected cardiomyocytes transfected with the neoceptor against hypoxia. Unlike 10, adenosine activated the wild-type A(3)AR (EC(50) of 1.0 microM), but had no effect on the H272E mutant A(3)AR (100 microM). Compound 10 was inactive at human A(1), A(2A), and A(2B)ARs. The orthogonal pair comprising an engineered receptor and a modified agonist should be useful for elucidating signaling pathways and could be therapeutically applied to diseases following organ-targeted delivery of the neoceptor gene.
克服传统激动剂疗法固有特异性不足的另一种方法是对G蛋白偶联受体(GPCR)及其激动剂进行重新设计。重新设计的受体(新受体)可被修饰的激动剂选择性激活,但不能被内源性激动剂激活。在基于视紫红质的分子建模辅助下,我们确定了A(3)腺苷受体(AR)的突变,以便在腺苷进行互补修饰后选择性增强亲和力。所研究的核糖修饰包括在3'位:氨基、氨甲基、叠氮基、胍基、脲基;以及在5'位:尿苷酰胺基、叠氮脱氧。N(6)位的变体包括3-碘苄基、5-氯-2-甲氧基苄基和甲基。一种N(6)-3-碘苄基-3'-脲基腺苷衍生物10在COS-7细胞中激活磷脂酶C(EC(50) = 0.18 microM),或在鸡原代心肌细胞中激活磷脂酶D,两者均由突变体(H272E)介导,而非野生型A(3)AR。10和相应的3'-乙酰氨基甲基类似物6的亲和力增强分别>100倍和>20倍。10以浓度依赖的方式保护转染了新受体的心肌细胞免受缺氧影响。与10不同,腺苷激活野生型A(3)AR(EC(50)为1.0 microM),但对H272E突变体A(3)AR(100 microM)无影响。化合物10对人A(1)、A(2A)和A(2B)AR无活性。由工程化受体和修饰激动剂组成的正交对应有助于阐明信号通路,并可通过新受体基因的器官靶向递送在治疗疾病中应用。