Moa María J Gonzalez, Mosquera Ricardo A
Departamento de Química Física, Facultade de Química, Lagoas-Marcosende s/n, Universidade de Vigo, Galicia, Spain.
J Phys Chem A. 2006 May 4;110(17):5934-41. doi: 10.1021/jp0575660.
QTAIM properties for uracil and 18 derivatives containing the substituents -NH(2), -OH, -OCH(3), -SH, -F, -Cl, -CH(3) -NO(2), and -Li in position 5 or 6 were computed on MP2/6-31++G//MP2/6-31G charge densities. The results indicate that -OH, -OCH(3), and -NH(2) groups are really retrieving charge from the ring. Also, the activating ability of the substituent groups, usually considered as the variation of electron population at the carbon where the electrophilic attack takes place, C, was studied. The study shows that the activating ability is reflected by the variation of pi charge or quadrupole moment at C, and also by the variation of the Laplacian of the charge density in the secondary charge concentration points around C (SCC-C). They indicate a similar, but not exactly equal, graduation of activating ability. The relative behavior of the substituents is basically the same as in benzene, though benzene has more tendency to concentrate charge in the SCC-C regions than uracil, where this tendency is larger for 6- than for 5-derivatives. sigma(+/-)(R) Taft parameters are found to display good correlations with the above indicated activating indexes. Finally, the resonance model predicts most of the main variations displayed by QTAIM atomic pi electron populations of derivatives with regard to uracil, but there are still some significant variations of the pi electron charge that it cannot predict.
在MP2/6 - 31++G//MP2/6 - 31G电荷密度上计算了尿嘧啶及其18种衍生物的QTAIM性质,这些衍生物在5位或6位含有取代基-NH₂、-OH、-OCH₃、-SH、-F、-Cl、-CH₃、-NO₂和-Li。结果表明,-OH、-OCH₃和-NH₂基团确实从环中获取电荷。此外,还研究了取代基的活化能力,通常将其视为亲电攻击发生的碳原子C处电子布居的变化。研究表明,活化能力通过C处π电荷或四极矩的变化以及C周围二级电荷浓度点(SCC - C)处电荷密度拉普拉斯算子的变化来反映。它们表明活化能力的分级相似但不完全相同。取代基的相对行为与苯中的基本相同,尽管苯比尿嘧啶更倾向于在SCC - C区域集中电荷,其中6 - 衍生物的这种倾向比5 - 衍生物更大。发现σ(+/-)(R)塔夫脱参数与上述活化指数显示出良好的相关性。最后,共振模型预测了衍生物相对于尿嘧啶的QTAIM原子π电子布居所显示的大部分主要变化,但仍有一些π电子电荷的显著变化无法预测。