Suppr超能文献

一种基于生理学的人体药代动力学预测新策略。

A novel strategy for physiologically based predictions of human pharmacokinetics.

作者信息

Jones Hannah M, Parrott Neil, Jorga Karin, Lavé Thierry

机构信息

Drug Metabolism and Pharmacokinetics, F. Hoffmann-La Roche Ltd, Basel, Switzerland.

出版信息

Clin Pharmacokinet. 2006;45(5):511-42. doi: 10.2165/00003088-200645050-00006.

Abstract

BACKGROUND

The major aim of this study was to develop a strategy for predicting human pharmacokinetics using physiologically based pharmacokinetic (PBPK) modelling. This was compared with allometry (of plasma concentration-time profiles using the Dedrick approach), in order to determine the best approaches and strategies for the prediction of human pharmacokinetics.

METHODS

PBPK and Dedrick predictions were made for 19 F. Hoffmann-La Roche compounds. A strategy for the prediction of human pharmacokinetics using PBPK modelling was proposed in this study. Predicted values (pharmacokinetic parameters, plasma concentrations) were compared with observed values obtained after intravenous and oral administration in order to assess the accuracy of the prediction methods.

RESULTS

By following the proposed strategy for PBPK, a prediction would have been made prospectively for approximately 70% of the compounds. The prediction accuracy for these compounds in terms of the percentage of compounds with an average-fold error of <2-fold was 83%, 50%, 75%, 67%, 92% and 100% for apparent oral clearance (CL/F), apparent volume of distribution during terminal phase after oral administration (V(z)/F), terminal elimination half-life (t(1/2)), peak plasma concentration (C(max)), area under the plasma concentration-time curve (AUC) and time to reach C(max) (t(max)), respectively. For the other 30% compounds, unacceptable prediction accuracy was obtained in animals; therefore, a prospective prediction of human pharmacokinetics would not have been made using PBPK. For these compounds, prediction accuracy was also poor using the Dedrick approach. In the majority of cases, PBPK gave more accurate predictions of pharmacokinetic parameters and plasma concentration-time profiles than the Dedrick approach.

CONCLUSIONS

Based on the dataset evaluated in this study, PBPK gave reasonable predictions of human pharmacokinetics using preclinical data and is the recommended approach in the majority of cases. In addition, PBPK modelling is a useful tool to gain insights into the properties of a compound. Thus, PBPK can guide experimental efforts to obtain the relevant information necessary to understand the compound's properties before entry into human, ultimately resulting in a higher level of prediction accuracy.

摘要

背景

本研究的主要目的是开发一种使用生理药代动力学(PBPK)模型预测人体药代动力学的策略。将其与异速生长法(使用德德里克方法对血浆浓度-时间曲线进行分析)进行比较,以确定预测人体药代动力学的最佳方法和策略。

方法

对19种罗氏公司的化合物进行了PBPK和德德里克预测。本研究提出了一种使用PBPK模型预测人体药代动力学的策略。将预测值(药代动力学参数、血浆浓度)与静脉注射和口服给药后获得的观测值进行比较,以评估预测方法的准确性。

结果

按照所提出的PBPK策略,大约70%的化合物能够进行前瞻性预测。对于这些化合物,表观口服清除率(CL/F)、口服给药后终末相表观分布容积(V(z)/F)、终末消除半衰期(t(1/2))、血药峰浓度(C(max))、血浆浓度-时间曲线下面积(AUC)以及达峰时间(t(max))的平均误差倍数<2倍的化合物百分比预测准确率分别为83%、50%、75%、67%、92%和100%。对于另外30%的化合物,在动物实验中获得的预测准确率不可接受;因此,无法使用PBPK对人体药代动力学进行前瞻性预测。对于这些化合物,使用德德里克方法的预测准确率也很低。在大多数情况下,PBPK对药代动力学参数和血浆浓度-时间曲线的预测比德德里克方法更准确。

结论

基于本研究评估的数据集,PBPK使用临床前数据对人体药代动力学做出了合理预测,并且在大多数情况下是推荐的方法。此外,PBPK模型是深入了解化合物性质的有用工具。因此,PBPK可以指导实验工作,在进入人体试验之前获取了解化合物性质所需的相关信息,最终提高预测准确率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验