Suppr超能文献

对人类EST进行生物信息学筛选,以寻找正常组织和肿瘤组织中差异表达的基因。

Bioinformatic screening of human ESTs for differentially expressed genes in normal and tumor tissues.

作者信息

Aouacheria Abdel, Navratil Vincent, Barthelaix Audrey, Mouchiroud Dominique, Gautier Christian

机构信息

Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR 5558, Université Claude Bernard Lyon 1, 69622 Villeurbanne Cedex, France.

出版信息

BMC Genomics. 2006 Apr 26;7:94. doi: 10.1186/1471-2164-7-94.

Abstract

BACKGROUND

Owing to the explosion of information generated by human genomics, analysis of publicly available databases can help identify potential candidate genes relevant to the cancerous phenotype. The aim of this study was to scan for such genes by whole-genome in silico subtraction using Expressed Sequence Tag (EST) data.

METHODS

Genes differentially expressed in normal versus tumor tissues were identified using a computer-based differential display strategy. Bcl-xL, an anti-apoptotic member of the Bcl-2 family, was selected for confirmation by western blot analysis.

RESULTS

Our genome-wide expression analysis identified a set of genes whose differential expression may be attributed to the genetic alterations associated with tumor formation and malignant growth. We propose complete lists of genes that may serve as targets for projects seeking novel candidates for cancer diagnosis and therapy. Our validation result showed increased protein levels of Bcl-xL in two different liver cancer specimens compared to normal liver. Notably, our EST-based data mining procedure indicated that most of the changes in gene expression observed in cancer cells corresponded to gene inactivation patterns. Chromosomes and chromosomal regions most frequently associated with aberrant expression changes in cancer libraries were also determined.

CONCLUSION

Through the description of several candidates (including genes encoding extracellular matrix and ribosomal components, cytoskeletal proteins, apoptotic regulators, and novel tissue-specific biomarkers), our study illustrates the utility of in silico transcriptomics to identify tumor cell signatures, tumor-related genes and chromosomal regions frequently associated with aberrant expression in cancer.

摘要

背景

由于人类基因组学产生的信息爆炸,对公开可用数据库的分析有助于识别与癌性表型相关的潜在候选基因。本研究的目的是利用表达序列标签(EST)数据通过全基因组电子减法来扫描此类基因。

方法

使用基于计算机的差异显示策略识别在正常组织与肿瘤组织中差异表达的基因。选择Bcl-xL(Bcl-2家族的一种抗凋亡成员)通过蛋白质印迹分析进行验证。

结果

我们的全基因组表达分析确定了一组基因,其差异表达可能归因于与肿瘤形成和恶性生长相关的基因改变。我们提出了可能作为寻求癌症诊断和治疗新候选物项目靶点的完整基因列表。我们的验证结果显示,与正常肝脏相比,两种不同肝癌标本中Bcl-xL的蛋白质水平升高。值得注意的是,我们基于EST的数据挖掘程序表明,在癌细胞中观察到的大多数基因表达变化对应于基因失活模式。还确定了与癌症文库中异常表达变化最常相关的染色体和染色体区域。

结论

通过描述几个候选物(包括编码细胞外基质和核糖体成分、细胞骨架蛋白、凋亡调节因子以及新型组织特异性生物标志物的基因),我们的研究说明了电子转录组学在识别肿瘤细胞特征、肿瘤相关基因以及与癌症异常表达频繁相关的染色体区域方面的实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b94e/1459866/5ab6b27ffc8d/1471-2164-7-94-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验