在计算机上对位于人类mRNA非翻译区的癌症相关单核苷酸多态性进行全基因组筛选。
In silico whole-genome screening for cancer-related single-nucleotide polymorphisms located in human mRNA untranslated regions.
作者信息
Aouacheria Abdel, Navratil Vincent, López-Pérez Ricardo, Gutiérrez Norma C, Churkin Alexander, Barash Danny, Mouchiroud Dominique, Gautier Christian
机构信息
Laboratory of Biometry and Evolutionary Biology, CNRS UMR 5558, Claude Bernard University Lyon 1, 69622 Villeurbanne, France.
出版信息
BMC Genomics. 2007 Jan 3;8:2. doi: 10.1186/1471-2164-8-2.
BACKGROUND
A promising application of the huge amounts of genetic data currently available lies in developing a better understanding of complex diseases, such as cancer. Analysis of publicly available databases can help identify potential candidates for genes or mutations specifically related to the cancer phenotype. In spite of their huge potential to affect gene function, no systematic attention has been paid so far to the changes that occur in untranslated regions of mRNA.
RESULTS
In this study, we used Expressed Sequence Tag (EST) databases as a source for cancer-related sequence polymorphism discovery at the whole-genome level. Using a novel computational procedure, we focused on the identification of untranslated region (UTR)-localized non-coding Single Nucleotide Polymorphisms (UTR-SNPs) significantly associated with the tumoral state. To explore possible relationships between genetic mutation and phenotypic variation, bioinformatic tools were used to predict the potential impact of cancer-associated UTR-SNPs on mRNA secondary structure and UTR regulatory elements. We provide a comprehensive and unbiased description of cancer-associated UTR-SNPs that may be useful to define genotypic markers or to propose polymorphisms that can act to alter gene expression levels. Our results suggest that a fraction of cancer-associated UTR-SNPs may have functional consequences on mRNA stability and/or expression.
CONCLUSION
We have undertaken a comprehensive effort to identify cancer-associated polymorphisms in untranslated regions of mRNA and to characterize putative functional UTR-SNPs. Alteration of translational control can change the expression of genes in tumor cells, causing an increase or decrease in the concentration of specific proteins. Through the description of testable candidates and the experimental validation of a number of UTR-SNPs discovered on the secreted protein acidic and rich in cysteine (SPARC) gene, this report illustrates the utility of a cross-talk between in silico transcriptomics and cancer genetics.
背景
当前可用的大量遗传数据的一个有前景的应用在于更好地理解复杂疾病,如癌症。对公开可用数据库的分析有助于识别与癌症表型特异性相关的基因或突变的潜在候选者。尽管它们对基因功能有巨大影响潜力,但迄今为止,尚未系统关注信使核糖核酸(mRNA)非翻译区发生的变化。
结果
在本研究中,我们使用表达序列标签(EST)数据库作为全基因组水平上发现癌症相关序列多态性的来源。通过一种新颖的计算程序,我们专注于识别与肿瘤状态显著相关的非翻译区(UTR)定位的非编码单核苷酸多态性(UTR-SNP)。为了探索基因突变与表型变异之间的可能关系,使用生物信息学工具预测癌症相关UTR-SNP对mRNA二级结构和UTR调控元件的潜在影响。我们提供了对癌症相关UTR-SNP的全面且无偏的描述,这可能有助于定义基因型标记或提出可改变基因表达水平的多态性。我们的结果表明,一部分癌症相关UTR-SNP可能对mRNA稳定性和/或表达具有功能影响。
结论
我们已全面努力识别mRNA非翻译区的癌症相关多态性并表征推定的功能性UTR-SNP。翻译控制的改变可改变肿瘤细胞中基因的表达,导致特定蛋白质浓度的增加或减少。通过描述可测试的候选者以及对在富含半胱氨酸的酸性分泌蛋白(SPARC)基因上发现的一些UTR-SNP进行实验验证,本报告说明了计算机转录组学与癌症遗传学之间相互作用的效用。