Suppr超能文献

脂质与跨膜蛋白相互作用的化学计量学——从三维结构推导得出

Stoichiometry of lipid interactions with transmembrane proteins--Deduced from the 3D structures.

作者信息

Páli Tibor, Bashtovyy Denys, Marsh Derek

机构信息

Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, 37070 Göttingen, Germany.

出版信息

Protein Sci. 2006 May;15(5):1153-61. doi: 10.1110/ps.052021406.

Abstract

The stoichiometry of the first shell of lipids interacting with a transmembrane protein is defined operationally by the population of spin-labeled lipid chains whose motion is restricted directly by the protein. Interaction stoichiometries have been determined experimentally for a wide range of alpha-helical integral membrane proteins by using spin-label ESR spectroscopy. Here, we determine the spatially defined number of first-shell lipids at the hydrophobic perimeter of integral membrane proteins whose 3D structure has been determined by X-ray crystallography and lipid-protein interactions characterized by spin-labeling. Molecular modeling is used to build a single shell of lipids surrounding transmembrane structures derived from the PDB. Constrained energy optimization of the protein-lipid assemblies is performed by molecular mechanics. For relatively small proteins (up to 7-12 transmembrane helices), the geometrical first shell corresponds to that defined experimentally by perturbation of the lipid-chain dynamics. For larger, multi-subunit alpha-helical proteins, the lipids perturbed directly by the protein may either exceed or be less in number than those that can be accommodated at the intramembranous perimeter. In these latter cases, the motionally restricted spin-labeled lipids can be augmented by intercalation, or can correspond to a specific subpopulation at the protein interface, respectively. For monomeric beta-barrel proteins, the geometrical lipid stoichiometry corresponds to that determined from lipid mobility for a 22-stranded barrel, but fewer lipids are motionally restricted than can be accommodated around an eight-stranded barrel. Deviations from the geometrical first shell, in the beta-barrel case, are for the smaller protein with a highly curved barrel.

摘要

与跨膜蛋白相互作用的第一层脂质的化学计量关系,是通过其运动直接受该蛋白限制的自旋标记脂质链群体来进行操作性定义的。通过使用自旋标记电子顺磁共振光谱法,已经针对多种α螺旋整合膜蛋白通过实验确定了相互作用化学计量关系。在这里,我们确定了其三维结构已通过X射线晶体学确定且脂质-蛋白相互作用通过自旋标记表征的整合膜蛋白疏水周边处第一层脂质在空间上定义的数量。分子建模用于构建围绕源自蛋白质数据银行(PDB)的跨膜结构的单层脂质。通过分子力学对蛋白质-脂质组装体进行受限能量优化。对于相对较小的蛋白质(多达7 - 12个跨膜螺旋),几何第一层与通过脂质链动力学扰动实验确定的第一层相对应。对于更大的多亚基α螺旋蛋白,直接受蛋白质扰动的脂质数量可能超过或少于膜内周边可容纳的脂质数量。在这些后一种情况下,受运动限制的自旋标记脂质可分别通过插入来增加,或对应于蛋白质界面处的特定亚群。对于单体β桶状蛋白,几何脂质化学计量与从脂质流动性确定的22链桶状结构相对应,但受运动限制的脂质比八链桶状结构周围可容纳的脂质少。在β桶状结构的情况下,与几何第一层的偏差是针对具有高度弯曲桶状结构的较小蛋白质。

相似文献

1
5
Incorporation of outer membrane protein OmpG in lipid membranes: protein-lipid interactions and beta-barrel orientation.
Biochemistry. 2008 Jun 10;47(23):6189-98. doi: 10.1021/bi800203g. Epub 2008 May 13.
6
Folding of β-Barrel Membrane Proteins into Lipid Membranes by Site-Directed Fluorescence Spectroscopy.
Methods Mol Biol. 2019;2003:465-492. doi: 10.1007/978-1-4939-9512-7_20.
10
Functional significance of the lipid-protein interface in photosynthetic membranes.
Cell Mol Life Sci. 2003 Aug;60(8):1591-606. doi: 10.1007/s00018-003-3173-x.

引用本文的文献

1
Eukaryotic Cell Membranes: Structure, Composition, Research Methods and Computational Modelling.
Int J Mol Sci. 2023 Jul 7;24(13):11226. doi: 10.3390/ijms241311226.
2
Biophysical approaches for exploring lipopeptide-lipid interactions.
Biochimie. 2020 Mar;170:173-202. doi: 10.1016/j.biochi.2020.01.009. Epub 2020 Jan 21.
3
Interaction of the Mechanosensitive Channel, MscS, with the Membrane Bilayer through Lipid Intercalation into Grooves and Pockets.
J Mol Biol. 2019 Aug 9;431(17):3339-3352. doi: 10.1016/j.jmb.2019.05.043. Epub 2019 Jun 4.
4
An Inward-Rectifier Potassium Channel Coordinates the Properties of Biologically Derived Membranes.
Biophys J. 2019 May 7;116(9):1701-1718. doi: 10.1016/j.bpj.2019.03.023. Epub 2019 Apr 2.
6
Electron spin resonance in membrane research: protein-lipid interactions from challenging beginnings to state of the art.
Eur Biophys J. 2010 Mar;39(4):513-25. doi: 10.1007/s00249-009-0512-3. Epub 2009 Aug 11.
7
Interaction of spin-labeled inhibitors of the vacuolar H+-ATPase with the transmembrane Vo-sector.
Biophys J. 2008 Jan 15;94(2):506-14. doi: 10.1529/biophysj.107.111781. Epub 2007 Sep 14.
8
Lateral pressure profile, spontaneous curvature frustration, and the incorporation and conformation of proteins in membranes.
Biophys J. 2007 Dec 1;93(11):3884-99. doi: 10.1529/biophysj.107.107938. Epub 2007 Aug 17.
9
Curvature elasticity and refolding of OmpA in large unilamellar vesicles.
Biophys J. 2006 Oct 15;91(8):L75-7. doi: 10.1529/biophysj.106.091439. Epub 2006 Aug 4.

本文引用的文献

1
OPM: orientations of proteins in membranes database.
Bioinformatics. 2006 Mar 1;22(5):623-5. doi: 10.1093/bioinformatics/btk023. Epub 2006 Jan 5.
4
Transmembrane proteins in the Protein Data Bank: identification and classification.
Bioinformatics. 2004 Nov 22;20(17):2964-72. doi: 10.1093/bioinformatics/bth340. Epub 2004 Jun 4.
5
The low-spin heme of cytochrome c oxidase as the driving element of the proton-pumping process.
Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15304-9. doi: 10.1073/pnas.2635097100. Epub 2003 Dec 12.
6
Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside.
Nature. 2003 Nov 6;426(6962):39-44. doi: 10.1038/nature02056.
8
Structure and gating mechanism of the acetylcholine receptor pore.
Nature. 2003 Jun 26;423(6943):949-55. doi: 10.1038/nature01748.
10
The structure of bacterial outer membrane proteins.
Biochim Biophys Acta. 2002 Oct 11;1565(2):308-17. doi: 10.1016/s0005-2736(02)00577-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验