Suppr超能文献

机械敏感通道 MscS 通过脂质插入沟槽和口袋与膜双层相互作用。

Interaction of the Mechanosensitive Channel, MscS, with the Membrane Bilayer through Lipid Intercalation into Grooves and Pockets.

机构信息

School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.

School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.

出版信息

J Mol Biol. 2019 Aug 9;431(17):3339-3352. doi: 10.1016/j.jmb.2019.05.043. Epub 2019 Jun 4.

Abstract

All membrane proteins have dynamic and intimate relationships with the lipids of the bilayer that may determine their activity. Mechanosensitive channels sense tension through their interaction with the lipids of the membrane. We have proposed a mechanism for the bacterial channel of small conductance, MscS, that envisages variable occupancy of pockets in the channel by lipid chains. Here, we analyze protein-lipid interactions for MscS by quenching of tryptophan fluorescence with brominated lipids. By this strategy, we define the limits of the bilayer for TM1, which is the most lipid exposed helix of this protein. In addition, we show that residues deep in the pockets, created by the oligomeric assembly, interact with lipid chains. On the cytoplasmic side, lipids penetrate as far as the pore-lining helices and lipid molecules can align along TM3b perpendicular to lipids in the bilayer. Cardiolipin, free fatty acids, and branched lipids can access the pockets where the latter have a distinct effect on function. Cholesterol is excluded from the pockets. We demonstrate that introduction of hydrophilic residues into TM3b severely impairs channel function and that even "conservative" hydrophobic substitutions can modulate the stability of the open pore. The data provide important insights into the interactions between phospholipids and MscS and are discussed in the light of recent developments in the study of Piezo1 and TrpV4.

摘要

所有的膜蛋白与双层膜中的脂质都有动态而密切的关系,这种关系可能决定了它们的活性。机械敏感通道通过与膜脂质的相互作用来感知张力。我们提出了一种细菌小电导通道 MscS 的机制,设想了脂质链对通道中口袋的可变占据。在这里,我们通过溴化脂质对色氨酸荧光的猝灭来分析 MscS 的蛋白-脂质相互作用。通过这种策略,我们定义了 TM1 的双层边界,TM1 是该蛋白最暴露于脂质的螺旋。此外,我们还表明,由寡聚组装形成的深口袋中的残基与脂质链相互作用。在细胞质侧,脂质可以渗透到孔道衬里的螺旋中,并且脂质分子可以沿着 TM3b 垂直于双层膜中的脂质排列。心磷脂、游离脂肪酸和支链脂质可以进入口袋,后者对功能有明显影响。胆固醇被排除在口袋之外。我们证明,在 TM3b 中引入亲水性残基会严重损害通道功能,即使是“保守”的疏水性取代也可以调节开放孔道的稳定性。这些数据为磷脂与 MscS 之间的相互作用提供了重要的见解,并结合 Piezo1 和 TrpV4 研究的最新进展进行了讨论。

相似文献

1
Interaction of the Mechanosensitive Channel, MscS, with the Membrane Bilayer through Lipid Intercalation into Grooves and Pockets.
J Mol Biol. 2019 Aug 9;431(17):3339-3352. doi: 10.1016/j.jmb.2019.05.043. Epub 2019 Jun 4.
3
Structure of the Mechanosensitive Channel MscS Embedded in the Membrane Bilayer.
J Mol Biol. 2019 Aug 9;431(17):3081-3090. doi: 10.1016/j.jmb.2019.07.006. Epub 2019 Jul 7.
4
The mechanosensitive channel of small conductance (MscS) functions as a Jack-in-the box.
Biochim Biophys Acta. 2015 Jan;1848(1 Pt A):159-66. doi: 10.1016/j.bbamem.2014.10.022. Epub 2014 Oct 23.
5
Visualization of the mechanosensitive ion channel MscS under membrane tension.
Nature. 2021 Feb;590(7846):509-514. doi: 10.1038/s41586-021-03196-w. Epub 2021 Feb 10.
6
How do mechanosensitive channels sense membrane tension?
Biochem Soc Trans. 2016 Aug 15;44(4):1019-25. doi: 10.1042/BST20160018.
7
Mechanosensitive channel YnaI has lipid-bound extended sensor paddles.
Commun Biol. 2021 May 20;4(1):602. doi: 10.1038/s42003-021-02122-0.
8
The role of lipids in mechanosensation.
Nat Struct Mol Biol. 2015 Dec;22(12):991-8. doi: 10.1038/nsmb.3120. Epub 2015 Nov 9.
10
Defining the role of the tension sensor in the mechanosensitive channel of small conductance.
Biophys J. 2011 Jul 20;101(2):345-52. doi: 10.1016/j.bpj.2011.05.058.

引用本文的文献

1
A Minimalist Model Lipid System Mimicking the Biophysical Properties of 's Inner Membrane.
Langmuir. 2025 May 20;41(19):12301-12310. doi: 10.1021/acs.langmuir.5c01138. Epub 2025 May 7.
3
Structure of mechanically activated ion channel OSCA2.3 reveals mobile elements in the transmembrane domain.
Structure. 2024 Feb 1;32(2):157-167.e5. doi: 10.1016/j.str.2023.11.009. Epub 2023 Dec 15.
5
Structure-guided mutagenesis of OSCAs reveals differential activation to mechanical stimuli.
bioRxiv. 2024 Mar 4:2023.10.03.560740. doi: 10.1101/2023.10.03.560740.
6
Effects of Coix Seed Oil on High Fat Diet-Induced Obesity and Dyslipidemia.
Foods. 2022 Oct 20;11(20):3267. doi: 10.3390/foods11203267.
7
How Functional Lipids Affect the Structure and Gating of Mechanosensitive MscS-like Channels.
Int J Mol Sci. 2022 Dec 1;23(23):15071. doi: 10.3390/ijms232315071.
8
Cell Envelope Stress Response in Pseudomonas aeruginosa.
Adv Exp Med Biol. 2022;1386:147-184. doi: 10.1007/978-3-031-08491-1_6.
9
Asymmetric effects of amphipathic molecules on mechanosensitive channels.
Sci Rep. 2022 Jun 15;12(1):9976. doi: 10.1038/s41598-022-14446-w.
10
Molecular Paradigms for Biological Mechanosensing.
J Phys Chem B. 2021 Nov 11;125(44):12115-12124. doi: 10.1021/acs.jpcb.1c06330. Epub 2021 Oct 28.

本文引用的文献

1
Piezo's membrane footprint and its contribution to mechanosensitivity.
Elife. 2018 Nov 27;7:e41968. doi: 10.7554/eLife.41968.
2
Direct protein-lipid interactions shape the conformational landscape of secondary transporters.
Nat Commun. 2018 Oct 8;9(1):4151. doi: 10.1038/s41467-018-06704-1.
4
"Force-from-lipids" gating of mechanosensitive channels modulated by PUFAs.
J Mech Behav Biomed Mater. 2018 Mar;79:158-167. doi: 10.1016/j.jmbbm.2017.12.026. Epub 2017 Dec 28.
5
Structure-based membrane dome mechanism for Piezo mechanosensitivity.
Elife. 2017 Dec 12;6:e33660. doi: 10.7554/eLife.33660.
6
Bacterial Mechanosensors.
Annu Rev Physiol. 2018 Feb 10;80:71-93. doi: 10.1146/annurev-physiol-021317-121351. Epub 2017 Dec 1.
7
Transmembrane helices containing a charged arginine are thermodynamically stable.
Eur Biophys J. 2017 Oct;46(7):627-637. doi: 10.1007/s00249-017-1206-x. Epub 2017 Apr 13.
9
A competing hydrophobic tug on L596 to the membrane core unlatches S4-S5 linker elbow from TRP helix and allows TRPV4 channel to open.
Proc Natl Acad Sci U S A. 2016 Oct 18;113(42):11847-11852. doi: 10.1073/pnas.1613523113. Epub 2016 Oct 3.
10
Toward a structural blueprint for bilayer-mediated channel mechanosensitivity.
Channels (Austin). 2017 Mar 4;11(2):91-93. doi: 10.1080/19336950.2016.1224624. Epub 2016 Aug 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验