Paulitsch Christoph, Gardonio Paolo, Elliott Stephen J
Institute of Sound and Vibration Research, University of Southampton, Highfield, Southampton, S017 1BJ, United Kingdom.
J Acoust Soc Am. 2006 Apr;119(4):2131-40. doi: 10.1121/1.2141228.
Collocated direct velocity feedback with ideal point force actuators mounted on structures is unconditionally stable and generates active damping. When inertial actuators are used to generate the control force, the system can become unstable even for moderate velocity feedback gains due to an additional -180 degree phase lag introduced by the fundamental axial resonant mode of the inertial actuator. In this study a relative velocity sensor is used to implement an inner velocity feedback loop that generates internal damping in a lightweight, electrodynamic, inertial actuator. Simulation results for a model problem with the actuator mounted on a clamped plate show that, when internal relative velocity feedback is used in addition to a conventional external velocity feedback loop, there is an optimum combination of internal and external velocity feedback gains, which, for a given gain margin, maximizes vibration reduction. These predictions are validated in experiments with a specially built lightweight inertial actuator.
在结构上安装理想点力致动器并配置直接速度反馈是无条件稳定的,并且会产生主动阻尼。当使用惯性致动器来产生控制力时,由于惯性致动器的基本轴向共振模式引入了额外的180度相位滞后,即使对于适度的速度反馈增益,系统也可能变得不稳定。在本研究中,使用相对速度传感器来实现一个内部速度反馈回路,该回路在一个轻质电动惯性致动器中产生内部阻尼。将致动器安装在夹紧板上的模型问题的仿真结果表明,当除了传统的外部速度反馈回路之外还使用内部相对速度反馈时,存在内部和外部速度反馈增益的最佳组合,对于给定的增益裕度,该组合能使振动减少最大化。这些预测在使用专门制造的轻质惯性致动器的实验中得到了验证。