Suppr超能文献

基于模型的蛋白质主链核磁共振分配与推断

Model-based assignment and inference of protein backbone Nuclear Magnetic Resonances.

作者信息

Vitek Olga, Vitek Jan, Craig Bruce, Bailey-Kellogg Chris

机构信息

Purdue University.

出版信息

Stat Appl Genet Mol Biol. 2004;3:Article6. doi: 10.2202/1544-6115.1037. Epub 2004 May 6.

Abstract

Nuclear Magnetic Resonance (NMR) spectroscopy is a key experimental technique used to study protein structure, dynamics, and interactions. NMR methods face the bottleneck of spectral analysis, in particular determining the resonance assignments, which help define the mapping between atoms in the protein and peaks in the spectra. A substantial amount of noise in spectral data, along with ambiguities in interpretation, make this analysis a daunting task, and there exists no generally accepted measure of uncertainty associated with the resulting solutions. This paper develops a model-based inference approach that addresses the problem of characterizing uncertainty in backbone resonance assignment. We argue that NMR spectra are subject to random variation, and ignoring this stochasticity can lead to false optimism and erroneous conclusions. We propose a Bayesian statistical model that accounts for various sources of uncertainty and provides an automatable framework for inference. While assignment has previously been viewed as a deterministic optimization problem, we demonstrate the importance of considering all solutions consistent with the data, and develop an algorithm to search this space within our statistical framework. Our approach is able to characterize the uncertainty associated with backbone resonance assignment in several ways: 1) it quantifies of uncertainty in the individually assigned resonances in terms of their posterior standard deviations; 2) it assesses the information content in the data with a posterior distribution of plausible assignments; and 3) it provides a measure of the overall plausibility of assignments. We demonstrate the value of our approach in a study of experimental data from two proteins, Human Ubiquitin and Cold-shock protein A from E. coli. In addition, we provide simulations showing the impact of experimental conditions on uncertainty in the assignments.

摘要

核磁共振(NMR)光谱学是用于研究蛋白质结构、动力学和相互作用的关键实验技术。NMR方法面临光谱分析的瓶颈,特别是确定共振归属,这有助于定义蛋白质中的原子与光谱峰之间的映射关系。光谱数据中存在大量噪声,加上解释上的模糊性,使得这种分析成为一项艰巨的任务,并且对于所得解决方案不存在普遍接受的不确定性度量。本文开发了一种基于模型的推理方法,以解决主链共振归属中不确定性表征的问题。我们认为NMR光谱会受到随机变化的影响,忽略这种随机性可能导致错误的乐观情绪和错误的结论。我们提出了一种贝叶斯统计模型,该模型考虑了各种不确定性来源,并提供了一个可自动化的推理框架。虽然归属以前被视为一个确定性优化问题,但我们证明了考虑与数据一致的所有解决方案的重要性,并开发了一种算法在我们的统计框架内搜索这个空间。我们的方法能够以多种方式表征与主链共振归属相关的不确定性:1)它根据后验标准差量化单个归属共振中的不确定性;2)它通过合理归属的后验分布评估数据中的信息含量;3)它提供了归属总体合理性的度量。我们在对来自两种蛋白质(人泛素和大肠杆菌冷休克蛋白A)的实验数据的研究中证明了我们方法的价值。此外,我们提供了模拟结果,展示了实验条件对归属不确定性的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验