Xiong Fei, Pandurangan Gopal, Bailey-Kellogg Chris
Department of Computer Science, Dartmouth College, Hanover, NH 03755, USA.
Bioinformatics. 2008 Jul 1;24(13):i205-13. doi: 10.1093/bioinformatics/btn167.
Complementing its traditional role in structural studies of proteins, nuclear magnetic resonance (NMR) spectroscopy is playing an increasingly important role in functional studies. NMR dynamics experiments characterize motions involved in target recognition, ligand binding, etc., while NMR chemical shift perturbation experiments identify and localize protein-protein and protein-ligand interactions. The key bottleneck in these studies is to determine the backbone resonance assignment, which allows spectral peaks to be mapped to specific atoms. This article develops a novel approach to address that bottleneck, exploiting an available X-ray structure or homology model to assign the entire backbone from a set of relatively fast and cheap NMR experiments.
We formulate contact replacement for resonance assignment as the problem of computing correspondences between a contact graph representing the structure and an NMR graph representing the data; the NMR graph is a significantly corrupted, ambiguous version of the contact graph. We first show that by combining connectivity and amino acid type information, and exploiting the random structure of the noise, one can provably determine unique correspondences in polynomial time with high probability, even in the presence of significant noise (a constant number of noisy edges per vertex). We then detail an efficient randomized algorithm and show that, over a variety of experimental and synthetic datasets, it is robust to typical levels of structural variation (1-2 AA), noise (250-600%) and missings (10-40%). Our algorithm achieves very good overall assignment accuracy, above 80% in alpha-helices, 70% in beta-sheets and 60% in loop regions.
Our contact replacement algorithm is implemented in platform-independent Python code. The software can be freely obtained for academic use by request from the authors.
核磁共振(NMR)光谱在蛋白质结构研究中的传统作用之外,在功能研究中也发挥着越来越重要的作用。NMR动力学实验表征了目标识别、配体结合等过程中涉及的运动,而NMR化学位移扰动实验则可识别并定位蛋白质-蛋白质和蛋白质-配体相互作用。这些研究中的关键瓶颈是确定主链共振归属,这使得光谱峰能够映射到特定原子上。本文开发了一种新颖的方法来解决这一瓶颈,利用现有的X射线结构或同源模型,通过一组相对快速且廉价的NMR实验来确定整个主链的归属。
我们将用于共振归属的接触替换问题表述为计算代表结构的接触图与代表数据的NMR图之间的对应关系;NMR图是接触图的一个严重受损且模糊的版本。我们首先表明,通过结合连通性和氨基酸类型信息,并利用噪声的随机结构,即使存在大量噪声(每个顶点有恒定数量的噪声边),也能在多项式时间内以高概率证明地确定唯一对应关系。然后我们详细介绍了一种高效的随机算法,并表明在各种实验和合成数据集上,它对典型水平的结构变异(1 - 2个氨基酸)、噪声(250 - 600%)和缺失(10 - 40%)具有鲁棒性。我们的算法在整体归属准确性方面表现出色,在α螺旋中高于80%,在β折叠中为70%,在环区中为60%。
我们的接触替换算法用与平台无关的Python代码实现。该软件可应作者要求免费获取以供学术使用。