Suppr超能文献

稀疏数据的推理主干分配

Inferential backbone assignment for sparse data.

作者信息

Vitek Olga, Bailey-Kellogg Chris, Craig Bruce, Vitek Jan

机构信息

Institute for Systems Biology, 1441 North 34th Street, Seattle, WA, 98103-8904, USA.

出版信息

J Biomol NMR. 2006 Jul;35(3):187-208. doi: 10.1007/s10858-006-9027-8.

Abstract

This paper develops an approach to protein backbone NMR assignment that effectively assigns large proteins while using limited sets of triple-resonance experiments. Our approach handles proteins with large fractions of missing data and many ambiguous pairs of pseudoresidues, and provides a statistical assessment of confidence in global and position-specific assignments. The approach is tested on an extensive set of experimental and synthetic data of up to 723 residues, with match tolerances of up to 0.5 ppm for Calpha and Cbeta resonance types. The tests show that the approach is particularly helpful when data contain experimental noise and require large match tolerances. The keys to the approach are an empirical Bayesian probability model that rigorously accounts for uncertainty in the data at all stages in the analysis, and a hybrid stochastic tree-based search algorithm that effectively explores the large space of possible assignments.

摘要

本文开发了一种蛋白质主链核磁共振(NMR)归属方法,该方法在使用有限的三共振实验集时能有效地对大型蛋白质进行归属。我们的方法能够处理存在大量缺失数据以及许多伪残基模糊对的蛋白质,并对全局和特定位置归属的置信度提供统计评估。该方法在多达723个残基的大量实验和合成数据上进行了测试,对于α-碳(Calpha)和β-碳(Cbeta)共振类型,匹配容差高达0.5 ppm。测试表明,当数据包含实验噪声且需要较大匹配容差时,该方法特别有用。该方法的关键在于一个经验贝叶斯概率模型,它在分析的所有阶段都能严格考虑数据中的不确定性,以及一种基于随机树的混合搜索算法,该算法能有效地探索可能归属的大空间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验