Purdom Elizabeth, Holmes Susan P
Stanford University, USA.
Stat Appl Genet Mol Biol. 2005;4:Article16. doi: 10.2202/1544-6115.1070. Epub 2005 Jul 12.
We present a new instance of Laplace's second Law of Errors and show how it can be used in the analysis of data from microarray experiments. This error distribution is shown to fit microarray expression data much better than a normal distribution. The use of this distribution in a parametric bootstrap leads to more powerful tests as we show that the t-test is conservative in this setting. We propose a biological explanations for this distribution based on the Pareto distribution of the variables used to compute the log ratios.
我们给出拉普拉斯第二误差定律的一个新实例,并展示它如何用于分析微阵列实验数据。结果表明,这种误差分布比正态分布更适合微阵列表达数据。正如我们所表明的,在这种情况下t检验是保守的,在参数自助法中使用这种分布会导致更强大的检验。我们基于用于计算对数比率的变量的帕累托分布,为这种分布提出了一种生物学解释。