van der Laan Mark J, Hubbard Alan E
Division of Biostatistics, School of Public Health, University of California, Berkeley, CA, USA.
Stat Appl Genet Mol Biol. 2006;5:Article14. doi: 10.2202/1544-6115.1199. Epub 2006 May 21.
Simultaneously testing a collection of null hypotheses about a data generating distribution based on a sample of independent and identically distributed observations is a fundamental and important statistical problem involving many applications. Methods based on marginal null distributions (i.e., marginal p-values) are attractive since the marginal p-values can be based on a user supplied choice of marginal null distributions and they are computationally trivial, but they, by necessity, are known to either be conservative or to rely on assumptions about the dependence structure between the test-statistics. Re-sampling based multiple testing (Westfall and Young, 1993) involves sampling from a joint null distribution of the test-statistics, and controlling (possibly in a, for example, step-down fashion) the user supplied type-I error rate under this joint null distribution for the test-statistics. A generally asymptotically valid null distribution avoiding the need for the subset pivotality condition for the vector of test-statistics was proposed in Pollard, van der Laan (2003) for null hypotheses about general real valued parameters. This null distribution was generalized in Dudoit, vanderLaan, Pollard (2004) to general null hypotheses and test-statistics. In ongoing recent work van der Laan, Hubbard (2005), we propose a new generally asymptotically valid null distribution for the test-statistics and a corresponding bootstrap estimate, whose marginal distributions are user supplied, and can thus be set equal to the (most powerful) marginal null distributions one would use in univariate testing to obtain a p-value. Previous proposed null distributions either relied on a restrictive subset pivotality condition (Westfall and Young) or did not guarantee this latter property (Dudoit, vanderLaan, Pollard, 2004). It is argued and illustrated that the resulting new re-sampling based multiple testing methods provide more accurate control of the wished Type-I error in finite samples and are more powerful. We establish formal results and investigate the practical performance of this methodology in a simulation and data analysis.
基于独立同分布观测样本,同时检验关于数据生成分布的一组原假设,是一个涉及诸多应用的基本且重要的统计问题。基于边际原分布(即边际p值)的方法颇具吸引力,因为边际p值可基于用户提供的边际原分布选择,且计算简单,但众所周知,它们要么保守,要么依赖于检验统计量之间依赖结构的假设。基于重抽样的多重检验(韦斯特福尔和扬,1993年)涉及从检验统计量的联合原分布中抽样,并在该联合原分布下控制(可能以例如逐步递减的方式)用户提供的检验统计量的I型错误率。波拉德、范德兰特(2003年)针对关于一般实值参数的原假设,提出了一种通常渐近有效的原分布,避免了对检验统计量向量的子集枢轴性条件的需求。这种原分布在杜多伊特、范德兰特、波拉德(2004年)中被推广到一般原假设和检验统计量。在范德兰特、哈伯德(2005年)正在进行的近期工作中,我们为检验统计量提出了一种新的通常渐近有效的原分布以及相应的自助估计,其边际分布由用户提供,因此可以设置为等于在单变量检验中用于获得p值的(最强大的)边际原分布。先前提出的原分布要么依赖于严格的子集枢轴性条件(韦斯特福尔和扬),要么不保证后一种性质(杜多伊特、范德兰特、波拉德,2004年)。本文论证并举例说明,由此产生的基于新重抽样的多重检验方法在有限样本中能更准确地控制期望的I型错误,且功效更强。我们建立了形式化结果,并在模拟和数据分析中研究了该方法的实际性能。