Donnet Sophie, Lavielle Marc, Poline Jean-Baptiste
Laboratoire de mathématiques, Université de Paris Sud, 91405 Orsay, France.
Neuroimage. 2006 Jul 1;31(3):1169-76. doi: 10.1016/j.neuroimage.2005.08.068. Epub 2006 May 2.
An accurate estimation of the hemodynamic response function (HRF) in functional magnetic resonance imaging (fMRI) is crucial for a precise spatial and temporal estimate of the underlying neuronal processes. Recent works have proposed non-parametric estimation of the HRF under the hypotheses of linearity and stationarity in time. Biological literature suggests, however, that response magnitude may vary with attention or ongoing activity. We therefore test a more flexible model that allows for the variation of the magnitude of the HRF with time in a maximum likelihood framework. Under this model, the magnitude of the HRF evoked by a single event may vary across occurrences of the same type of event. This model is tested against a simpler model with a fixed magnitude using information theory. We develop a standard EM algorithm to identify the event magnitudes and the HRF. We test this hypothesis on a series of 32 regions (4 ROIS on eight subjects) of interest and find that the more flexible model is better than the usual model in most cases. The important implications for the analysis of fMRI time series for event-related neuroimaging experiments are discussed.
在功能磁共振成像(fMRI)中,准确估计血流动力学响应函数(HRF)对于精确地在空间和时间上估计潜在的神经元过程至关重要。最近的研究提出了在时间上线性和平稳性假设下对HRF进行非参数估计。然而,生物学文献表明,响应幅度可能随注意力或正在进行的活动而变化。因此,我们在最大似然框架下测试了一个更灵活的模型,该模型允许HRF的幅度随时间变化。在这个模型下,单个事件诱发的HRF幅度可能在同一类型事件的不同发生情况中有所不同。使用信息论,将这个模型与一个具有固定幅度的更简单模型进行比较测试。我们开发了一种标准的期望最大化(EM)算法来识别事件幅度和HRF。我们在一系列32个感兴趣区域(八名受试者各有4个感兴趣区)上测试了这个假设,发现在大多数情况下,更灵活的模型比通常的模型更好。文中讨论了这一结果对事件相关神经成像实验的fMRI时间序列分析的重要意义。