Suppr超能文献

将能量代谢纳入多细胞肿瘤球体的生长模型。

Incorporating energy metabolism into a growth model of multicellular tumor spheroids.

作者信息

Venkatasubramanian Raja, Henson Michael A, Forbes Neil S

机构信息

Department of Chemical Engineering, University of Massachusetts, 159 Goessmann Laboratory, 686 North Pleasant Street, Amherst, MA 01003-9303, USA.

出版信息

J Theor Biol. 2006 Sep 21;242(2):440-53. doi: 10.1016/j.jtbi.2006.03.011. Epub 2006 May 2.

Abstract

Diffusion limitations in tumors create regions that are deficient in essential nutrients and contain a large number of quiescent and dying cells. Chemotherapeutic compounds are not effective against quiescent cells and therefore have reduced efficacy against tumors with extensive quiescence. We have formulated a mathematical model that predicts the extent and location of quiescence in multicellular spheroids. Multicellular spheroids are in vitro models of in vivo tumor growth that have proven to be useful experimental systems for studying radiation therapy, drug penetration, and novel chemotherapeutic strategies. Our model incorporates a realistic description of primary energy metabolism within reaction-diffusion equations to predict local glucose, oxygen, and lactate concentrations and an overall spheroid growth rate. The model development is based on the assumption that local cellular growth and death rates are determined by local ATP production generated by intracellular energy metabolism. Dynamic simulation and parametric sensitivity studies are used to evaluate model behavior, including the spatial distribution of proliferating, quiescent, and dead cells for different cellular characteristics. Using this model we have determined the critical cell survival parameters that have the greatest impact on overall spheroid physiology, and we have found that oxygen transport has a greater effect than glucose transport on the distribution of quiescent cells. By predicting the extent of quiescence based on individual cellular characteristic alone this model has the potential to predict therapeutic efficiency and can be used to design effective chemotherapeutic strategies.

摘要

肿瘤中的扩散限制会形成一些区域,这些区域缺乏必需营养素,并且含有大量静止和濒死细胞。化疗化合物对静止细胞无效,因此对具有广泛静止状态的肿瘤疗效降低。我们构建了一个数学模型,用于预测多细胞球体中静止状态的范围和位置。多细胞球体是体内肿瘤生长的体外模型,已被证明是研究放射治疗、药物渗透和新型化疗策略的有用实验系统。我们的模型在反应扩散方程中纳入了对主要能量代谢的实际描述,以预测局部葡萄糖、氧气和乳酸浓度以及球体的总体生长速率。该模型的开发基于这样的假设,即局部细胞生长和死亡率由细胞内能量代谢产生的局部ATP生成决定。动态模拟和参数敏感性研究用于评估模型行为,包括不同细胞特征下增殖、静止和死亡细胞的空间分布。使用这个模型,我们确定了对球体整体生理学影响最大的关键细胞存活参数,并发现氧气运输对静止细胞分布的影响比葡萄糖运输更大。通过仅根据个体细胞特征预测静止程度,该模型有潜力预测治疗效果,并可用于设计有效的化疗策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验