Department of Mechanical & Aerospace Engineering, University of California, Los Angeles, California, USA.
Department of Biochemistry, University of California, Los Angeles, California, USA.
Biotechnol J. 2023 Jun;18(6):e2200434. doi: 10.1002/biot.202200434. Epub 2023 Mar 20.
3D cancer spheroids represent a highly promising model for study of cancer progression and therapeutic development. Wide-scale adoption of cancer spheroids, however, remains a challenge due to the lack of control over hypoxic gradients that may cloud the assessment of cell morphology and drug response. Here, we present a Microwell Flow Device (MFD) that generates in-well laminar flow around 3D tissues via repetitive tissue sedimentation. Using a prostate cancer cell line, we demonstrate the spheroids in the MFD exhibit improved cell growth, reduced necrotic core formation, enhanced structural integrity, and downregulated expression of cell stress genes. The flow-cultured spheroids also exhibit an improved sensitivity to chemotherapy with greater transcriptional response. These results demonstrate how fluidic stimuli reveal the cellular phenotype previously masked by severe necrosis. Our platform advances 3D cellular models and enables study into hypoxia modulation, cancer metabolism, and drug screening within pathophysiological conditions.
3D 癌症球体代表了一种极具前途的癌症进展和治疗开发研究模型。然而,由于缺乏对缺氧梯度的控制,癌症球体的广泛应用仍然是一个挑战,这可能会影响对细胞形态和药物反应的评估。在这里,我们提出了一种微流控装置(MFD),它通过组织的重复沉降在微室内产生围绕 3D 组织的层流。使用前列腺癌细胞系,我们证明 MFD 中的球体表现出改善的细胞生长、减少坏死核心形成、增强结构完整性和下调细胞应激基因的表达。流动培养的球体对化疗也表现出更高的敏感性,转录反应更大。这些结果表明,流体刺激如何揭示以前被严重坏死掩盖的细胞表型。我们的平台推进了 3D 细胞模型,并能够在病理生理条件下研究缺氧调节、癌症代谢和药物筛选。